21、如圖,過矩形ABCD的對角線AC的中點O作EF⊥AC交AD于E,交BC于F,連接AF、EC.
(1)試判斷四邊形AFCE的形狀,并證明你的結(jié)論;
(2)若CD=4,BC=8,求S四邊形AFCE的值.
分析:(1)有一組鄰邊相等的平行四邊形是菱形.根據(jù)圖形很容易證出△AOF≌△COF,進(jìn)而證得四邊形AFCE是平行四邊形,又證AE=CE,因而?AFCE是菱形.
(2)先設(shè)CF=x,那么BF=8-x,在Rt△ABF中,利用勾股定理可求出CF=5,所以S菱形AFCE=CF×AB=20.
解答:解:(1)菱形.
∵EF垂直平分AC,
∴OA=OC,AE=CE.
而∠AOE=∠COF,
又∵ABCD是矩形,
∴AD∥BC,
∴∠AEO=∠CFO,
∴△AOF≌△COF,
∴AE=CF
又AE∥CF
∴四邊形AFCE是平行四邊形,
∴?AFCE是菱形.

(2)先設(shè)CF=x,那么BF=8-x,
由(1)知AF=CF,
故CF=x,
在Rt△ABF中,AB2+BF2=AF2,即(8-x)2+42=x2,解得,x=5,
所以S菱形AFCE=CF×AB=20.
點評:本題利用了菱形的判定(一組鄰邊相等的平行四邊形是菱形),還有全等三角形的判定和性質(zhì)及勾股定理、菱形面積公式的計算等問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,過矩形ABCD的四個頂點作對角線AC、BD的平行線,分別相交于E、F、G、H四點,則四邊形EFGH為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,過矩形ABCD的四個頂點作對角線AC、BD的平行線,分別相交于E、F、G、H四點,則四邊形EFGH為
菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,過矩形ABCD的對角線BD上一點K分別作矩形兩邊的平行線MN與PQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•肇慶二模)如圖,過矩形ABCD(AD>AB)的對角線AC的中點O作AC的垂直平分線EF,分別交AD、BC于點E、F,分別連接AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)過點E作AD的垂線交AC于點P,求證:2AE2=AC•AP.

查看答案和解析>>

同步練習(xí)冊答案