【題目】(問題提出)我們知道:同弧或等弧所對(duì)的圓周角都相等,且等于這條弧所對(duì)的圓心角的一半.那么,在一個(gè)圓內(nèi)同一條弦所對(duì)的圓周角與圓心角之間又有什么關(guān)系?
(初步思考)(1)如圖,是的弦,,點(diǎn)、分別是優(yōu)弧和劣弧上的點(diǎn),則______°._______°.
(2)如圖,是的弦,圓心角,點(diǎn)P是上不與A、B重合的一點(diǎn),求弦所對(duì)的圓周角的度數(shù)(用m的代數(shù)式表示).
(問題解決)(3)如圖,已知線段,點(diǎn)C在所在直線的上方,且.用尺規(guī)作圖的方法作出滿足條件的點(diǎn)C所組成的圖形(不寫作法,保留作圖痕跡).
【答案】(1)(1)50°,130°;(2);(3)見解析
【解析】
(1)根據(jù)同弧或等弧所對(duì)的圓周角都相等,且等于這條弧所對(duì)的圓心角的一半,即可得解;
(2)首先將點(diǎn)P分情況討論:優(yōu)弧和劣弧,然后直接根據(jù)同弧或等弧所對(duì)的圓周角都相等,且等于這條弧所對(duì)的圓心角的一半,即可得解;
(3)根據(jù)(2)中所得結(jié)論,以AB的中點(diǎn)為圓心,AB為直徑作圓,然后過圓心作與其垂直的直徑,交圓與D、E兩點(diǎn),再以D為圓心,DB為半徑作圓,劣弧AB即為所求.
(1)根據(jù)題意,得
,
(2)當(dāng)P在優(yōu)弧上時(shí)
當(dāng)在劣弧上時(shí),.
∴
(3)如圖所示,
如圖即為所求(劣弧).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形 ABCD 中,AE 平分∠BAD 交邊 BC 于 E,DF 平分∠ADC 交邊 BC 于 F,若 AD=11,EF=5,則 AB= ___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在改革開放30年紀(jì)念活動(dòng)中,某校學(xué)生會(huì)就同學(xué)們對(duì)我國(guó)改革開放30年所取得的輝煌成就的了解程度進(jìn)行了隨機(jī)抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖的一部分.
根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)本次抽樣調(diào)查的樣本容量是 .調(diào)查中“了解很少”的學(xué)生占 %;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全校共有學(xué)生1300人,那么該校約有多少名學(xué)生“很了解”我國(guó)改革開放30年來(lái)取得的輝煌成就.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,則DM的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點(diǎn)O為圓心,OA為半徑作弧交AB于點(diǎn)C,交OB于點(diǎn)D,若OA=4,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE繞點(diǎn)A作360°旋轉(zhuǎn),點(diǎn)F、M、N分別為線段BE、BC、CD的中點(diǎn),連接MN、NF.
問題提出:(1)如圖1,當(dāng)AD在線段AC上時(shí),則∠MNF的度數(shù)為 ,線段MN和線段NF的數(shù)量關(guān)系為 ;
深入討論:(2)如圖2,當(dāng)AD不在線段AC上時(shí),請(qǐng)求出∠MNF的度數(shù)及線段MN和線段NF的數(shù)量關(guān)系;
拓展延伸:(3)如圖3,△ADE持續(xù)旋轉(zhuǎn)過程中,若CE與BD交點(diǎn)為P,則△BCP面積的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中任取一個(gè)數(shù)作為k的值,則能使分式方程有非負(fù)實(shí)數(shù)解且使二次函數(shù)y=x2+2x﹣k﹣1的圖象與x軸無(wú)交點(diǎn)的概率為( )
A.B.C.D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知拋物線y=ax2﹣4amx+3am2(a、m為參數(shù),且a>0,m>0)與x軸交于A、B兩點(diǎn)(A在B的左邊),與y軸交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo)(結(jié)果可以含參數(shù)m);
(2)連接CA、CB,若C(0,3m),求tan∠ACB的值;
(3)如圖②,在(2)的條件下,拋物線的對(duì)稱軸為直線l:x=2,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),F是拋物線的對(duì)稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P,使△POF成為以點(diǎn)P為直角頂點(diǎn)的的等腰直角三角形.若存在,求出所有符合條件的點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com