【題目】請(qǐng)從以下兩個(gè)小題中任選一個(gè)作答,若多選,則按第一題計(jì)分.
A.一個(gè)八邊形的外角和是°.
B.計(jì)劃在樓層間修建一個(gè)坡角為35°的樓梯,若樓層間高度為2.7m,為了節(jié)省成本,現(xiàn)要將樓梯坡角增加11°,則樓梯的斜面長度約減少 m.(用科學(xué)計(jì)算器計(jì)算,結(jié)果精確到0.01m)

【答案】360;0.95
【解析】解:A、根據(jù)任何多邊形的外角和是360°,得出一個(gè)八邊形的外角和是360°;
故答案為:360;
B、∵坡角為35°,樓層間高度為2.7m,
∴樓梯的斜面長度= = ≈4.703(m),
∵將樓梯坡角增加11°后,樓梯的斜面長度= = ≈3.755(m),
∴樓梯的斜面長度約減少4.703﹣3.755≈0.95(m),
故答案為:0.95.
A、根據(jù)任何多邊形的外角和是360°即可得出答案;
B、根據(jù)三角函數(shù)的定義分別求出坡角為35°,樓層間高度為2.7m時(shí)樓梯的斜面長度和將樓梯坡角增加11°后樓梯的斜面長度,即可求出樓梯的斜面長度約減少多少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標(biāo)軸上,∠ACB=900,且A0,4),點(diǎn)C2,0),BE⊥x軸于點(diǎn)E,一次函數(shù)y=x+b經(jīng)過點(diǎn)B,交y軸于點(diǎn)D。

1求證;△AOC≌△CEB

2△ABD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

(1)(xy)(xy)-x(xy)+2xy,其中x=(3-π)0,y=()1

(2)(2ab)2-(2ab)(ab)-2(a-2b)(a+2b),其中ab=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)0,AOD=20°,DOF:FOB=1:7,射線OE平分∠BOF.

(1)求∠EOB的度數(shù);

(2)射線OE與直線CD有什么位置關(guān)系?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是(
A.30
B.34
C.36
D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABCD,E分別是AB,AC邊上的點(diǎn),△ADC≌△ADC',△AEB≌△AEB',C'DEB'∥BC,BECD交于點(diǎn)F,若∠BACx°,則∠BFC的大小是_____°.(用含x的式子表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲沿周長為300米的環(huán)形跑道按逆時(shí)針方向跑步,速度為a/秒,與此同時(shí)在甲后面100米的乙也沿該環(huán)形跑道按逆時(shí)針方向跑步,速度為3/秒.

(1)a1,求甲、乙兩人第一次相遇所用的時(shí)間;

(2)a3,甲、乙兩人第一次相遇所用的時(shí)間為80秒,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某網(wǎng)店的“翻牌抽獎(jiǎng)”活動(dòng),如圖,共有4張牌,分別對(duì)應(yīng)5元,10元,15元,20元的現(xiàn)金優(yōu)惠券,小明只能看到牌的背面.
(1)如果隨機(jī)翻一張牌,那么抽中20元現(xiàn)金優(yōu)惠券的概率是
(2)如果隨機(jī)翻兩張牌,且第一次翻的牌不參與下次翻牌,則所獲現(xiàn)金優(yōu)惠券的總值不低于30元的概率是多少?請(qǐng)畫樹狀圖或列表格說明問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長線于點(diǎn)P,連接AC,BC,PB:PC=1:2.
(1)求證:AC平分∠BAD;
(2)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;
(3)若AD=3,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案