精英家教網 > 初中數學 > 題目詳情

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,AC=6,BD=8,動點P從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止,點P′是點P關于BD的對稱點,PP′交BD于點M,若BM=x,△OPP′的面積為y,則y與x之間的函數圖象大致為( )

A.
B.
C.
D.

【答案】D
【解析】解:∵四邊形ABCD是菱形,
∴AB=BC=CD=DA,OA= AC=3,OB= BD=4,AC⊥BD,
①當BM≤4時,
∵點P′與點P關于BD對稱,
∴P′P⊥BD,
∴P′P∥AC,
∴△P′BP∽△CBA,
,即 ,
∴PP′= x,
∵OM=4﹣x,
∴△OPP′的面積y= PP′OM= × x(4﹣x)=﹣ x2+3x;
∴y與x之間的函數圖象是拋物線,開口向下,過(0,0)和(4,0);
②當BM≥4時,y與x之間的函數圖象的形狀與①中的相同,過(4,0)和(8,0);
綜上所述:y與x之間的函數圖象大致為
故選:D.
由菱形的性質得出AB=BC=CD=DA,OA= AC=3,OB= BD=4,AC⊥BD,分兩種情況:
①當BM≤4時,先證明△P′BP∽△CBA,得出比例式 ,求出PP′,得出△OPP′的面積y是關于x的二次函數,即可得出圖象的情形;
②當BM≥4時,y與x之間的函數圖象的形狀與①中的相同;即可得出結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=ax﹣a為拋物線y=ax2+bx+c(a、b、c為常數,a≠0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.

已知拋物線y=﹣ x2 x+2 與其“夢想直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C.
(1)填空:該拋物線的“夢想直線”的解析式為 , 點A的坐標為 , 點B的坐標為;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+c的開口向上,且經過點A(0,
(1)若此拋物線經過點B(2,﹣ ),且與x軸相交于點E,F(xiàn).
①填空:b=(用含a的代數式表示);
(2)若a= ,當0<x<1,拋物線上的點到x軸距離的最大值為3時,求b的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,AB=12,AC= ,∠B=30°,則△ABC的面積是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形AOCB的頂點A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長度滿足方程|x﹣15|+ =0(OA>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點,將△BCN沿直線BN折疊,點C恰好落在直線MN上的點D處,且tan∠CBD=

(1)求點B的坐標;
(2)求直線BN的解析式;
(3)將直線BN以每秒1個單位長度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關于運動的時間t(0<t≤13)的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”,已知點A、B、C、D分別是“果圓”與坐標軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得線段CD的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】以菱形ABCD的對角線交點O為坐標原點,AC所在的直線為x軸,已知A(﹣4,0),B(0,﹣2),M(0,4),P為折線BCD上一動點,作PE⊥y軸于點E,設點P的縱坐標為a.

(1)求BC邊所在直線的解析式;
(2)設y=MP2+OP2 , 求y關于a的函數關系式;
(3)當△OPM為直角三角形時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】圖1是太陽能熱水器裝置的示意圖,利用玻璃吸熱管可以把太陽能轉化為熱能,玻璃吸熱管與太陽光線垂直時,吸收太陽能的效果最好,假設某用戶要求根據本地區(qū)冬至正午時刻太陽光線與地面水平線的夾角(θ)確定玻璃吸熱管的傾斜角(太陽光線與玻璃吸熱管垂直),請完成以下計算:
如圖2,AB⊥BC,垂足為點B,EA⊥AB,垂足為點A,CD∥AB,CD=10cm,DE=120cm,F(xiàn)G⊥DE,垂足為點G.
(參考數據:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)

(1)若∠θ=37°50′,則AB的長約為cm;
(2)若FG=30cm,∠θ=60°,求CF的長.

查看答案和解析>>

同步練習冊答案