【題目】如圖,在平面直角坐標(biāo)系xOy中,直線lx軸和y軸于點A,B,反比例函數(shù)y=x0)的圖象于點C,過點Cy軸的平行線交x軸于點D,過點Bx軸的平行線交反比例函數(shù)y=-x0)的圖象于點E,則圖中陰影部分的總面積為______

【答案】6

【解析】

連接OC、OE,由同底等高的三角形面積相等結(jié)合反比例函數(shù)系數(shù)k的幾何意義,即可得出SOBE=SABE=×|-5|=2.5SOCD=SBCD=×7=3.5,再將其代入S陰影=SABE+SBCD中,即可求出陰影部分的總面積.

連接OC、OE,如圖所示,

CDy軸,BEx軸,

SOBE=SABE=×|-5|=2.5,

SOCD=SBCD=×7=3.5,

S陰影=ABE+SBCD=2.5+3.5=6,

故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,ACBC,點GAC中點,連結(jié)BG,CEBGF,交ABE,連接GE,點HAB中點,連接FH.以下結(jié)論:(1)∠ACE=∠ABG;(2)∠AGE=∠CGB:(3)若AB10,則BF4;(4FH平分∠BFE;(5SBGC3SCGE.其中正確結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級春游,現(xiàn)有36座和42座兩種客車供選擇租用,若只租用36座客車若干輛,則正好坐滿;若只租用42座客車,則能少租一輛,且有一輛車沒有坐滿,但超過30人;已知36座客車每輛租金400元,42座客車每輛租金440元.

(1)該校七年級共有多少人參加春游?

(2)請你幫該校設(shè)計一種最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題的提出:

如果點P是銳角ABC內(nèi)一動點,如何確定一個位置,使點PABC的三頂點的距離之和PA+PB+PC的值為最小?

問題的轉(zhuǎn)化:

(1)ΔAPC繞點A逆時針旋轉(zhuǎn)60度得到連接這樣就把確定PA+PB+PC的最小值的問題轉(zhuǎn)化成確定的最小值的問題了,請你利用如圖證明:

;

問題的解決:

(2)當(dāng)點P到銳角ABC的三項點的距離之和PA+PB+PC的值為最小時,請你用一定的數(shù)量關(guān)系刻畫此時的點P的位置:_____________________________;

問題的延伸:

(3)如圖是有一個銳角為30°的直角三角形,如果斜邊為2,點P是這個三角形內(nèi)一動點,請你利用以上方法,求點P到這個三角形各頂點的距離之和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠B =C,點D、E分別是邊AB、AC上的點,PD平分∠BDEBCH,PE平分∠DECBCG,DQ平分∠ADEPE延長線于Q。

1)∠A+B+C+P +Q = °;

2)猜想∠P與∠A的數(shù)量關(guān)系,并證明你的猜想;

3)若∠EGH =112°,求∠ADQ 的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC的三個頂點分別為A-3,2),B-3,-2),C3,-2).將ABC平移,使點A與點M23)重合,得到MNP

1)將ABC 平移 個單位長度,然后再向 平移 個單位長度,可以得到MNP

2)畫出MNP

3)在(1)的平移過程中,線段AC掃過的面積為 (只需填入數(shù)值,不必寫單位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決問題.

學(xué)校要購買A,B兩種型號的足球,按體育器材門市足球銷售價格(單價)計算:若買2個A型足球和3個B型足球,則要花費370元,若買3個A型足球和1個B型足球,則要花費240元.

(1)求A,B兩種型號足球的銷售價格各是多少元/個?

(2)學(xué)校擬向該體育器材門市購買A,B兩種型號的足球共20個,且費用不低于1300元,不超過1500元,則有哪幾種購球方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點,試分別根據(jù)下列條件,求出點的坐標(biāo)。

1)點軸上;

2)點橫坐標(biāo)比縱坐標(biāo)大3;

3)點在過點,且與軸平行的直線上。

查看答案和解析>>

同步練習(xí)冊答案