已知:關于x的一元二次方程
【小題1】(1)求證:方程有兩個實數(shù)根;
【小題2】(2)設m<0,且方程的兩個實數(shù)根分別為,(其中),若y是關于m的函數(shù),且,求這個函數(shù)的解析式;
【小題3】(3)在(2)的條件下,利用函數(shù)圖象求關于m的方程的解。


【小題1】(1)證明:∵是關于x的一元二次方程,
     ………1分
m2³0,
∴原方程有實數(shù)根.    …………2分
【小題2】(2)解:由求根公式,得

∴ x=m+1或.        ………3分
 m<0,
∴ m+1<1.
∵ ,
  x1=m+1, x2=" 1.     " ………4分

m<0)為所求. ……5分
【小題3】(3)解法一:如圖1, 在同一平面直角坐標系中分別畫出m<0)
y=-m+3(m<0)的圖象.     …………6分
由圖象可得當m<0時,方程的解為m=-1.……7分
解法二:如圖2, 在同一平面直角坐標系中分別畫出m<0)
y=m-3(m<0)的圖象.    …………………6分
由圖象可得當m<0時,方程的解為m=-1. ………7分
圖1                               圖2
說明:若第(1)問直接求出兩根,累計得3分;第(2)問沒寫m<0不扣分;第(3)
問所畫出函數(shù)圖象沒有限制取值范圍m<0不扣分

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:關于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求證:方程①有兩個實數(shù)根;
(2)求證:方程①有一個實數(shù)根為1;
(3)設方程①的另一個根為x1,若m+n=2,m為正整數(shù)且方程①有兩個不相等的整數(shù)根時,確定關于x的二次函數(shù)y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的條件下,把Rt△ABC放在坐標系內,其中∠CAB=90°,點A、B的坐標分別為(1,0)、(4,0),BC=5,將△ABC沿x軸向右平移,當點C落在拋物線上時,求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知:關于x的一元二次方程ax2+bx+c=3的一個根為x=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:關于x的一元二次方程x2-2(m+1)x+m2=0有兩個整數(shù)根,m<5且m為整數(shù).
(1)求m的值;
(2)當此方程有兩個非零的整數(shù)根時,將關于x的二次函數(shù)y=x2-2(m+1)x+m2的圖象沿x軸向左平移4個單位長度,求平移后的二次函數(shù)圖象的解析式;
(3)當直線y=x+b與(2)中的兩條拋物線有且只有三個交點時,求b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:關于x的一元二次方程x2-2x+c=0的一個實數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當-2<x≤2時,y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點A、B(A左B右),頂點為點C,問:是否存在這樣的點P,以P為位似中心,將△ABC放大為原來的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•延慶縣二模)已知:關于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時方程的兩個根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個交點,連接這兩點間的線段,并以這條線段為直徑在x軸的上方作半圓P,設直線l的解析式為y=x+b,若直線l與半圓P只有兩個交點時,求出b的取值范圍.

查看答案和解析>>

同步練習冊答案