【題目】如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角板的直角頂點放在點O處(∠DOE=90°).
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖②,將直角三角板DOE繞點O轉動,若OD恰好平分∠BOC,求∠AOE的度數(shù)。
【答案】(1)20;(2)55°
【解析】
(1)根據(jù)角的和差得出∠COE=∠DOE-∠BOC,代入求出即可;
(2)根據(jù)角平分線定義求出∠BOD =35°,再根據(jù)角的和差得出∠BOE=∠BOD+∠DOE=125°,再根據(jù)∠AOE=180°-∠BOE即可;
解:(1)如圖①,∵∠BOC=70°,∠DOE=90°
∴∠COE=∠DOE-∠BOC=90°-70°=20°,
故答案為:20;
(2)∵OD恰好平分∠BOC,∠BOC=70°,
∴∠BOD =∠BOC=35°,
∴∠BOE=∠BOD+∠DOE=125°,
∴∠AOE=180°-∠BOE==180°-125°=55°
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明袋子中裝有三只大小、質地都相同的小球,球面上分別標有數(shù)字1、﹣2、3,攪勻后先從中任意摸出一個小球(不放回),記下數(shù)字作為點A的橫坐標,再從余下的兩個小球中任意摸出一個小球,記下數(shù)字作為點A的縱坐標.
(1)用畫樹狀圖或列表等方法列出所有可能出現(xiàn)的結果;
(2)求點A落在第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD 中,∠ADB=90°,點 E 為 AB 邊的中點,點 F 為CD 邊的中點.
(1)求證:四邊形 DEBF 是菱形;
(2)當∠A 等于多少度時,四邊形 DEBF 是正方形?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,邊形為菱形,點為對角線上的一個動點,連接并延長交于點,連接.
(1)如圖1,求證:;
(2)如圖2,若,且,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一邊是另一邊的倍的三角形叫做智慧三角形,這兩邊中較長邊稱為智慧邊,這兩邊的 夾角叫做智慧角.
(1)在 Rt△ABC 中,∠ACB=90°,若∠A 為智慧角,則∠B 的度數(shù)為 ;
(2)如圖①,在△ABC 中,∠A=45°,∠B=30°,求證:△ABC 是智慧三角形;
(3)如圖②,△ABC 是智慧三角形,BC 為智慧邊,∠B 為智慧角,A(3,0),點 B,C 在函數(shù) y= (x>0)的圖像上,點 C 在點 B 的上方,且點 B 的縱坐標為.當△ABC是直角三角形時,求 k 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點C,使AC=AB;
②作∠ABM 的角平分線交AC于D點;
③在射線CM上作一點E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關系,并證明之.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關系?并證明你的結論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,圖象過點A(3,0),二次函數(shù)圖象對稱軸為直線x=1,給出四個結論:①b2>4ac;②bc<0;③2a+b=0;④當y>0時,0<x<3.其中正確的結論有( 。
A. 2個 B. 3個 C. 4個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,∠ACB =90°,∠A=30°,點D在直線AC上,CD=CB,點E在線段AC上,AE=2EC,連接EB、BD,則∠EBD=____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com