已知a、b為一等腰三角形的兩邊長,且滿足等式2+3=b-4,則此等腰三角形的周長是   
【答案】分析:根據(jù)被開方數(shù)大于等于0列式求出a的值,然后代入求出b的值,再根據(jù)三角形的周長公式分情況討論求解.
解答:解:根據(jù)題意得,3a-6≥0且2-a≥0,
解得a≥2且a≤2,
所以,a=2,
b-4=0,
解得b=4,
①當腰為2,底為4時不能構(gòu)成三角形;
②當腰為4,底為2時,周長為4+4+2=10.
故答案為:10.
點評:本題考查的知識點為:二次根式的被開方數(shù)是非負數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點.
(1)求拋物線的函數(shù)關(guān)系式;
(2)若過點C的直線y=kx+b與拋物線相交于點E (4,m),請求出△CBE的面積S的值;
(3)寫出二次函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)在拋物線上是否存在點P使得△ABP為等腰三角形?若存在,請指出一共有幾個滿足條件的點P,并求出其中一個點的坐標;若不存在這樣的點P,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知一幾何體的三視圖如下,正視圖和側(cè)視圖都是矩形,俯視圖為正方形,在該幾何體上任意選擇4個頂點,它們可能是如下各種幾何形體的4個頂點,這些幾何形體是
①③⑤
(寫出所有正確結(jié)論的編號).
①矩形;
②不是矩形的平行四邊形;
③有三個面為直角三角形,有一個面為等腰三角形的四面體;
④每個面都是等腰三角形的四面體;
⑤每個面都是直角三角形的四面體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:一張直角三角形紙片如圖1放置在平面直角坐標系中,一條直角邊OA落在x軸正半軸上,另一條直角邊OB落在y軸正半軸上,且OA=8,OB=6.現(xiàn)再找一個與Rt△ABO有一條公共邊且不重疊的三角形,使它們拼在一起后能構(gòu)成一個大的等腰三角形.例如:如圖2,△CBO與△ABO拼成等腰△ABC,則點C坐標為(-2,0).請直接寫出除圖2情況外,其他所有的所拼成的等腰三角形中除A、B、O三點外另一頂點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰順縣模擬)直角梯形ABCD中,AD∥BC,AB=AD=3,邊BC,AB分別在x軸和y軸上,已知點C的坐標分別為(4,0).動點P從B點出發(fā),以每秒1個單位的速度沿BC方向作勻速直線運動,同時點Q從D點出發(fā),以與P點相同的速度沿DA方向運動,當Q點運動到A點時,P,Q兩點同時停止運動.設(shè)點P運動時間為t,
(1)求線段CD的長.
(2)連接PQ交直線AC于點E,當AE:EC=1:2時,求t的值,并求出此時△PEC的面積.
(3)過Q點作垂直于AD的射線交AC于點M,交BC于點N,連接PM,
①是否存在某一時刻,使以M、P、C三點為頂點的三角形是等腰三角形?若存在,求出此時t的值;若不存在,請說明理由;
②當t=
1
1
時,點P、M、D在同一直線上.(直接寫出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

作圖題
(1)如圖1,已知?ABCD兩邊長分別是1和2,一個內(nèi)角為60°,將?ABCD剪一刀成兩部分,并拼成一個等腰三角形.要求在原圖上畫出剪切線和組成的等腰三角形,并填寫等腰三角形的周長(本題不限作圖工具)
圖1,周長=
6
6
                      
圖2,周長=
2+2
17
2+2
17

(2)如圖2,已知正方形ABCD邊長為2,將正方形剪兩刀成三部分,并拼成一個等腰非直角三角形,要求在原圖上畫出剪切線和拼成的三角形,并填出等腰三角形的周長.

查看答案和解析>>

同步練習(xí)冊答案