【題目】如圖,已知正方形ABCD的邊長(zhǎng)為2,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將點(diǎn)E繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)F,則線段AF的長(zhǎng)的最小值_____.
【答案】2﹣1
【解析】
根據(jù)題意先證明△ADE≌△CDF,則CF=AE=1,根據(jù)三角形三邊關(guān)系得:AF≤AC﹣CF,可知:當(dāng)F在AC上時(shí),AF最小,所以由勾股定理可得AC的長(zhǎng),可求得AF的最小值.
解:如圖,連接FC,AC,AE.
∵ED⊥DF,
∴∠EDF=∠EDA+∠ADF=90°,
∵四邊形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∴∠ADF+∠CDF=90°,
∴∠EDA=∠CDF,
在△ADE和△CDF中
∵,
∴△ADE≌△CDF(SAS),
∴CF=AE=1,
∵正方形ABCD的邊長(zhǎng)為2,
∴AC=2,
∵AF≥AC﹣CF,
∴AF≥2﹣1
∴AF的最小值是2﹣1;
故答案為:2﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,點(diǎn)G是BC邊上一點(diǎn),且BG=5(BG<CG). 將矩形紙片沿過點(diǎn)G的折痕GE折疊,使點(diǎn)B恰好落在AD邊上,折痕與矩形紙片ABCD的邊相交于點(diǎn)E,則折痕GE的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點(diǎn)D是斜邊AB的中點(diǎn),則tan∠ODA=( 。
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,若BC=9,tan∠CDA=,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)舉行英語演講比賽,準(zhǔn)備用1200元錢(全部用完)購(gòu)買A,B兩種筆記本作為獎(jiǎng)品,已知A,B兩種每本分別為12元和20元,設(shè)購(gòu)入A種x本,B種y本.
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)若購(gòu)進(jìn)A種的數(shù)量不少于B種的數(shù)量.
①求至少購(gòu)進(jìn)A種多少本?
②根據(jù)①的購(gòu)買,發(fā)現(xiàn)B種太多,在費(fèi)用不變的情況下把一部分B種調(diào)換成另一種C,調(diào)換后C種的數(shù)量多于B種的數(shù)量,已知C種每本8元,則調(diào)換后C種至少有______本(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長(zhǎng)為,的邊長(zhǎng)為,則的內(nèi)切圓半徑為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.
(1)求證:BD是⊙O的切線.
(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.
填空:
①當(dāng)的長(zhǎng)度是____________時(shí),四邊形ABDE是菱形;
②當(dāng)的長(zhǎng)度是____________時(shí),△ADE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°.
(1)請(qǐng)用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明);
(2)在(1)的條件下,若∠B=45°,AB=1,⊙P切BC于點(diǎn)D,求劣弧的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com