【題目】如圖,某人在山坡坡腳處測得電視塔尖點(diǎn)的仰角為,沿山坡向上走到處再測得點(diǎn)的仰角為,已知米,山坡坡度,且在同一條直線上,其中測傾器高度忽略不計(jì).
(1)求電視塔的高度;(計(jì)算結(jié)果保留根號形式)
(2)求此人所在位置點(diǎn)的鉛直高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):,)
【答案】(1)電視塔的高度為米;(2)此人所在位置點(diǎn)的鉛直高度約為24.3米.
【解析】
(1)根據(jù)、,由三角函數(shù)可以求解出電視塔的高度;
(2)構(gòu)造矩形,把求人所在位置點(diǎn)的鉛直高度轉(zhuǎn)化成求矩形OF的邊長,通過假設(shè)PB的長度,得到含未知數(shù)的方程式進(jìn)而求解
解:(1)在中,,
,
,
答:電視塔的高度為米;
(2)如圖,過點(diǎn)作,垂足為,過點(diǎn)作,垂足為,
則四邊形是矩形,
(矩形對邊相等).
由,設(shè)米,則,
,
在中,由,
∴是的等腰直角三角形,
,即,
.
即米,
答:此人所在位置點(diǎn)的鉛直高度約為24.3米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC.
(1)求出sin∠DBC的值;
(2)若AD=2,把∠BOC繞點(diǎn)O順時針旋轉(zhuǎn)(),交AB于點(diǎn)M,交BC于點(diǎn)N(如圖),求證:四邊形OMBN的面積為一個定值,并求出這個定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的正方形中,點(diǎn)為的靠近點(diǎn)的四等分點(diǎn),點(diǎn)為的中點(diǎn), 將沿著翻折得,連接,則點(diǎn)到的距離為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(1)班全體學(xué)生2018年初中畢業(yè)體育學(xué)業(yè)考試成績統(tǒng)計(jì)表如下:
成績/分 | 45 | 49 | 52 | 54 | 55 | 58 | 60 |
人數(shù) | 2 | 5 | 6 | 6 | 8 | 7 | 6 |
根據(jù)上表中信息判斷,下列結(jié)論中錯誤的是( )
A.該班一共有40名同學(xué)
B.該班學(xué)生這次考試成績的眾數(shù)是55分
C.該班學(xué)生這次考試成績的中位數(shù)是55分
D.該班學(xué)生這次考試成績的平均數(shù)是55分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中,,點(diǎn)是的中點(diǎn),連接,過點(diǎn)作平分交于點(diǎn),點(diǎn)在上,且
(1)求證:
(2)如圖②,過點(diǎn)作交的延長線于點(diǎn)
①若,求
②設(shè)交于,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,為一條對角線,,,,為的中點(diǎn),連接.
(1)求證:四邊形為菱形;
(2)連接,若平分,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(x1,y1),B(x2,y2),若x1x2+y1y2=0,且A,B均不為原點(diǎn),則稱A和B互為正交點(diǎn).比如:A(1,1),B(2,﹣2),其中1×2+1×(﹣2)=0,那么A和B互為正交點(diǎn).
(1)點(diǎn)P和Q互為正交點(diǎn),P的坐標(biāo)為(﹣2,3),
①如果Q的坐標(biāo)為(6,m),那么m的值為多少;
②如果Q的坐標(biāo)為(x,y),求y與x之間的關(guān)系式;
(2)點(diǎn)M和N互為正交點(diǎn),直接寫出∠MON的度數(shù);
(3)點(diǎn)C,D是以(0,2)為圓心,半徑為2的圓上的正交點(diǎn),以線段CD為邊,構(gòu)造正方形CDEF,圓心F在正方形CDEF的外部,求線段OE長度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:我們學(xué)習(xí)等邊三角形時得到直角三角形的一個性質(zhì):在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.
探究結(jié)論:小明同學(xué)對以上結(jié)論作了進(jìn)一步研究.
(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關(guān)系為 .
(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊△ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線段BE與DE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.
(3)當(dāng)點(diǎn)D為邊CB延長線上任意一點(diǎn)時,在(2)條件的基礎(chǔ)上,線段BE與DE之間存在怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論 .
拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)B是x軸正半軸上的一動點(diǎn),以AB為邊作等邊△ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時,求C點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com