【題目】城有肥料,城有肥料.現(xiàn)要把這些肥料全部運往兩鄉(xiāng),鄉(xiāng)需要肥料240t鄉(xiāng)需要肥料,其運往兩鄉(xiāng)的運費如下表:

兩城/兩鄉(xiāng)

C/(/)

D/(/)

20

24

15

17

設(shè)從城運往鄉(xiāng)的肥料為,從城運往兩鄉(xiāng)的總運費為元,從城運往兩鄉(xiāng)的總運費為

(1)分別寫出、之間的函數(shù)關(guān)系式(不要求寫自變量的取值范圍);

(2)試比較、兩城總運費的大小;

(3)城的總運費不得超過4800元,怎樣調(diào)運使兩城總費用的和最少?并求出最小值.

【答案】;(2) 當(dāng)時,城的總運費較少;當(dāng)時,,兩城的總運費相等;當(dāng)時,,城的總運費較少;(3)當(dāng)時,有最小值

【解析】

1)根據(jù)題目的要求,A城運往C鄉(xiāng)的肥料為xt,則運往D鄉(xiāng)的肥料(200-xt,從B城運往C鄉(xiāng)的肥料為(240-xtB城運往D鄉(xiāng)的肥料為(x+60t,代入計算可得到結(jié)果.

2)由(1)得到的 進(jìn)行分類討論,分別是,即可求出結(jié)果.

3)根據(jù)題意可列出不等式,用y表示出兩城的總費用,這樣就可以根據(jù)函數(shù)的性質(zhì)判斷.

(1)因為設(shè)從A城運往C鄉(xiāng)的肥料為xt,則從A城運往D鄉(xiāng)法人肥料為,從B城運往C鄉(xiāng)的肥料為

∴從B城運往D鄉(xiāng)的肥料為

,

(2),解得,

∴當(dāng)時,,城的總運費較少

當(dāng)時,,兩城的總運費相等,

當(dāng)時,城的總運費較少

3)由,

設(shè)兩城總運費和為,則

的增大而減小,

∴當(dāng)時,有最小值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm M由點B出發(fā)沿BA方向向點A勻速運動,同時點N由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s .連接MN,設(shè)運動時間為t(s)0t4﹚,解答下列問題:

⑴設(shè)△AMN的面積為S,求St之間的函數(shù)關(guān)系式,并求出S的最大值;

⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當(dāng)四邊形MNPC為菱形時,求t的值;

⑶當(dāng)t的值為 ,△AMN是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負(fù)半軸上,O是坐標(biāo)原點,tanAOC=,反比例函數(shù)y=﹣的圖象經(jīng)過點C,與AB交與點D,則COD的面積的值等于_____;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B為定點,定直線l//AB,Pl上一動點.點M,N分別為PA,PB的中點,對于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MN,AB之間的距離;

⑤∠APB的大。

其中會隨點P的移動而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點A逆時針旋轉(zhuǎn)60°得到△ADE,連接CD.,則的大小是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了考查學(xué)生的綜合素質(zhì),某市決定:九年級畢業(yè)生統(tǒng)一參加中考實驗操作考試,根據(jù)今年的實際情況,中考實驗操作考試科目為:(物理)、(化學(xué))、(生物),每科試題各為道,考生隨機抽取其中道進(jìn)行考試.小明和小麗是某校九年級學(xué)生,需參加實驗考試.

1)小明抽到化學(xué)實驗的概率為 ;

2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖正方形網(wǎng)格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.

1)在圖中畫出一個直角,并且其面積為5;

2)在圖中畫出一個等腰直角;

3)連接,直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,先有一張矩形紙片分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點落在矩形的邊上,記為點,點落在處,連接,交于點,連接.下列結(jié)論:

②四邊形是菱形;

重合時,;

的面積的取值范圍是

其中正確的是_____(把正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載,如圖①,以直角三角形的各邊為邊向外作等邊三角形,再把較小的兩個等邊三角形按如圖②的方式放置在最大等邊三角形內(nèi).若知道圖②中陰影部分的面積,則一定能求出圖②中(

A.最大等邊三角形與直角三角形面積的和B.最大等邊三角形的面積

C.較小兩個等邊三角形重疊部分的面積D.直角三角形的面積

查看答案和解析>>

同步練習(xí)冊答案