【題目】如圖,AB=4cm,AC=BD=3cm.∠CAB=∠DBA=60°,點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s),則點Q的運動速度為 cm/s,使得A、C、P三點構成的三角形與B、P、Q三點構成的三角形全等.
科目:初中數學 來源: 題型:
【題目】下列語句:
①“反證法”就是舉反例說明一個命題是假命題;②“等腰三角形兩底角相等”的逆命題是真命題;③分式有意義的條件是分子為零且分母不為零;④同旁內角互補.其中正確的個數為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在暑假到來之前,某機構向八年級學生推薦了A,B,C三條游學線路,現對全級學生喜歡哪一條游學線路作調查,以決定最終的游學線路,下面的統(tǒng)計量中最值得關注的是( )
A. 方差 B. 平均數 C. 中位數 D. 眾數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于正比例函數y=﹣2x,下列結論中正確的是( )
A. 函數圖象經過點(﹣2,1) B. y隨x的增大而減小
C. .函數圖象經過第一、三象限 D. 不論x取何值,總有y<0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:“半角問題”:
(1)如圖:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點.且∠EAF=60°.探究圖中線段EF,BE,FD之間的數量關系.
小明同學探究此“半角問題”的方法是:延長FD到點G.使DG=BE.連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是 ;(直接寫結論,不需證明)
探索延伸:當聰明的你遇到下面的問題該如何解決呢?
(2)若將(1)中“∠BAD=120°,∠EAF=60°”換為∠EAF=∠BAD.其它條件不變。如圖1,試問線段EF、BE、FD具有怎樣的數量關系,并證明.
(3)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是邊BC、CD上的點,且∠EAF=∠BAD,請直接寫出線段EF、BE、FD它們之間的數量關系.(不需要證明)
(4)如圖3,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長線上的點,且∠EAF=∠BAD,試問線段EF、BE、FD具有怎樣的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016山東濰坊第18題)在平面直角坐標系中,直線l:y=x﹣1與x軸交于點A1,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得點A1、A2、A3、…在直線l上,點C1、C2、C3、…在y軸正半軸上,則點Bn的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.
(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;
(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com