二次函數(shù)y=
2
3
x2
的圖象如圖所示,點A0位于坐標原點,A1,A2,A3,…,A2009在y軸的正半軸上,B1,B2,B3,…,B2009在二次函數(shù)y=
2
3
x2
第一象限的圖象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2008B2009A2009都為等邊三角形,計算出△A2008B2009A2009的邊長為______.
設△A0A1B1的邊長為m1;
∵△A0A1B1是等邊三角形,
∴∠A1A0B1=60°,∠B1A0x=30°;
故B1
3
m1
2
,
m1
2
);
由于點B1在拋物線的圖象上,則有:
2
3
×(
3
2
m12=
m1
2
,解得m1=1;
同理設△A1A2B2的邊長為m2;
同上可得B2
3
m2
2
,1+
m2
2
);
由于點B2也在拋物線的圖象上,則有:
2
3
×(
3
2
m22=
m2
2
+1,解得m2=2;
依此類推,△A2B3A3的邊長為:m3=3,

△AnBn+1An+1的邊長為mn+1=n+1;
∴△A2008B2009A2009的邊長為2009.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=
1
2
x2+bx+c的圖象與x軸只有一個公共點M,與y軸的交點為A,過點A的直線y=x+c與x軸交于點N,與這個二次函數(shù)的圖象交于點B.
(1)求點A、B的坐標(用含b、c的式子表示);
(2)當S△BMN=4S△AMN時,求二次函數(shù)的解析式;
(3)在(2)的條件下,設點P為x軸上的一個動點,那么是否存在這樣的點P,使得以P、A、M為頂點的三角形為等腰三角形?若存在,請寫出符合條件的所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象過(1,-1)、(2,1)、(-1,1)三點,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:直線y=-2x+4交x軸于點A,交y軸于點B,點C為x軸上一點,AC=1,且OC<OA.拋物線y=ax2+bx+c(a≠0)經(jīng)過點A、B、C.
(1)求該拋物線的表達式;
(2)點D的坐標為(-3,0),點P為線段AB上的一點,當銳角∠PDO的正切值是
1
2
時,求點P的坐標;
(3)在(2)的條件下,該拋物線上的一點E在x軸下方,當△ADE的面積等與四邊形APCE的面積時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,一單杠高2.2m,兩立柱間的距離為1.6m,將一根繩子的兩端拴于立柱與鐵杠的結合處A、B,繩子自然下垂,雖拋物線狀,一個身高0.7m的小孩站在距立柱0.4m處,其頭部剛好觸上繩子的D處,求繩子的最低點O到地面的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形OABC中,OA=8,OC=4,OA、OC分別在x,y軸上,點D在OA上,且CD=AD,
(1)求直線CD的解析式;
(2)求經(jīng)過B、C、D三點的拋物線的解析式;
(3)在上述拋物線上位于x軸下方的圖象上,是否存在一點P,使△PBC的面積等于矩形的面積?若存在,求出點P的坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某幢建筑物,從10m高的窗口A,用水管向外噴水,噴出的水流呈拋物線狀(拋物線所在的平面與墻面垂直,如圖,如果拋物線的最高點M離墻1m,離地面
40
3
m,則水流落地點B離墻的距離OB是( 。
A.2mB.3mC.4mD.5m

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學興趣小組經(jīng)討論得出結論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關于x的函數(shù)關系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的價格購進一批荔枝進行銷售,運輸過程中質量損耗5%,運輸費用是0.7元/千克,假設不計其他費用.
(1)水果商要把荔枝售價至少定為多少才不會虧本?
(2)在銷售過程中,水果商發(fā)現(xiàn)每天荔枝的銷售量m(千克)與銷售單價x(元/千克)之間滿足關系:m=-10x+120,那么當銷售單價定為多少時,每天獲得的利潤w最大?

查看答案和解析>>

同步練習冊答案