【題目】如圖,拋物線y=﹣ x2+bx+c經(jīng)過A(﹣1,0),B(0,2)兩點(diǎn),將△OAB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到△O′A′B′,點(diǎn)A落到點(diǎn)A′的位置.

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)將拋物線沿y軸平移后經(jīng)過點(diǎn)A′,求平移后所得拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后所得拋物線與y軸的交點(diǎn)為C,若點(diǎn)P在平移后的拋物線上,且滿足△OCP的面積是△O′A′P面積的2倍,求點(diǎn)P的坐標(biāo);
(4)設(shè)(2)中平移后所得拋物線與y軸的交點(diǎn)為C,與x軸的交點(diǎn)為D,點(diǎn)M在x軸上,點(diǎn)N在平移后所得拋物線上,直接寫出以點(diǎn)C,D,M,N為頂點(diǎn)的四邊形是以CD為邊的平行四邊形時(shí)點(diǎn)N的坐標(biāo).

【答案】
(1)

解:如圖1,把A(﹣1,0),B(0,2)兩點(diǎn)坐標(biāo)代入y=﹣ x2+bx+c得:

解得: ,

∴拋物線對(duì)應(yīng)的函數(shù)關(guān)系式:y=﹣ x2+ x+2


(2)

解:如圖2,∵A(﹣1,0),B(0,2),

∴OA=1,OB=2,

由旋轉(zhuǎn)得:O′B=OB=2,O′A′=OA=1,且旋轉(zhuǎn)角∠OBO′=90°,

∴O′(2,2),A′(2,1),

所以由原拋物線從O′平移到A′可知,拋物線向下平移1個(gè)單位,

∴平移后所得拋物線對(duì)應(yīng)的函數(shù)關(guān)系式:y=﹣ x2+ x+1


(3)

解:設(shè)P(a,﹣ a2+ a+1),

y=﹣ x2+ x+1,

當(dāng)x=0時(shí),y=1,

∴OC=A′O′=1,

根據(jù)點(diǎn)A(2,2)可分三種情況:

①當(dāng)a>2時(shí),如圖3,

∵SOCP=2SOAP

×1×a=2× ×1×(a﹣2),

a=4,

則y=﹣ a2+ a+1=﹣ ×42+ ×4+1=﹣ ,

∴P(4,﹣ ),

②當(dāng)0<a<2時(shí),如圖4,

∵SOCP=2SOAP

×1×a=2× ×1×(2﹣a),

a= ,

則y=﹣ a2+ a+1=﹣ × 2+ × +1=

∴P( , ),

③當(dāng)a<0時(shí),如圖5,

同理得: ×1×(﹣a)=2× ×(﹣a+2),

a=4(不符合題意,舍),

綜上所述,點(diǎn)P的坐標(biāo)為(4,﹣ )或(


(4)

解:設(shè)N(m,﹣ m2+ m+1),

如圖6,過N作NE⊥x軸于E,

∵四邊形CMND是平行四邊形,

∴CD∥MN,CD=MN,

∴∠CDO=∠MEN,

∵∠COD=∠MEN=90°,

∴△COD≌△NEM,

∴EN=CO,

m2 m﹣1=1,

解得:m=3或﹣1,

當(dāng)m=3時(shí),y=﹣1,

當(dāng)m=﹣1時(shí),y=﹣1,

∴N(3,﹣1)或(﹣1,﹣1),

如圖7就是點(diǎn)N(﹣1,﹣1)時(shí),所成的平行四邊形;

如圖8和如圖9,

∵四邊形CDMN是平行四邊形,

∴CN∥DM,

∴點(diǎn)C與點(diǎn)N是對(duì)稱點(diǎn),

∵C(0,1),對(duì)稱軸是x=﹣ =1,

∴N(2,1),

綜上所述,點(diǎn)N的坐標(biāo)為(3,﹣1)或(﹣1,﹣1)或(2,1).


【解析】(1)如圖1,利用待定系數(shù)法求二次函數(shù)的關(guān)系式;(2)如圖2,根據(jù)旋轉(zhuǎn)得出點(diǎn)O′(2,2),A′(2,1),知道原拋物線從向下平移1個(gè)單位得到新拋物線,根據(jù)原拋物線的關(guān)系式可以寫出新拋物線的函數(shù)關(guān)系式;(3)設(shè)P(a,﹣ a2+ a+1),根據(jù)點(diǎn)P的位置和A′的橫坐標(biāo)2可以分為三種情況:①當(dāng)a>2時(shí),如圖3,②當(dāng)0<a<2時(shí),如圖4,③當(dāng)a<0時(shí),如圖5,分別根據(jù)SOCP=2SOAP , 列等式求出a的值,并求出對(duì)應(yīng)P的坐標(biāo);(4)如圖6,因?yàn)辄c(diǎn)N在平移后所得拋物線上,所以設(shè)N(m,﹣ m2+ m+1),作輔助線,構(gòu)建全等三角形,發(fā)現(xiàn)點(diǎn)N的縱坐標(biāo)的絕對(duì)值為1,由此列式為: m2 m﹣1=1,解出m的值,求出點(diǎn)N的坐標(biāo).同理如圖7得出點(diǎn)N的坐標(biāo).
如圖8和9,點(diǎn)C與點(diǎn)N是對(duì)稱點(diǎn),根據(jù)點(diǎn)C的坐標(biāo)求點(diǎn)N的坐標(biāo).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn)),還要掌握二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對(duì)稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點(diǎn),則y1<y2其中結(jié)論正確的是(

A.①②
B.②③
C.②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“今天你光盤了嗎?”這是國(guó)家倡導(dǎo)“厲行節(jié)約,反對(duì)浪費(fèi)”以來(lái)的時(shí)尚流行語(yǔ).某校團(tuán)委隨機(jī)抽取了部分學(xué)生,對(duì)他們進(jìn)行了關(guān)于“光盤行動(dòng)”所持態(tài)度的調(diào)查,并根據(jù)調(diào)查收集的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計(jì)圖:

根據(jù)上述信息,解答下列問題:
(1)抽取的學(xué)生人數(shù)為;
(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)你估計(jì)該校1200名學(xué)生中對(duì)“光盤行動(dòng)”持贊成態(tài)度的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,對(duì)稱軸是x=1,有以下四個(gè)結(jié)論:
①abc>0;②b2﹣4ac>0;③b=﹣2a;④a+b+c>2,
其中正確的是(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BC=4,BD平分∠ABC,過點(diǎn)AAD⊥BD于點(diǎn)D,過點(diǎn)DDE∥CB,分別交AB、AC于點(diǎn)E、F,若EF=2DF,則AB的長(zhǎng)為( 。

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問題與探索
問題情境:課堂上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如圖(1),將一張菱形紙片ABCD(∠BAD>90°)沿對(duì)角線AC剪開,得到△ABC和△ACD.
操作發(fā)現(xiàn):
(1)將圖(1)中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)角α,使α=∠BAC,得到如圖(2)所示的△AC′D,分別延長(zhǎng)BC和DC′交于點(diǎn)E,則四邊形ACEC′的形狀是

(2)創(chuàng)新小組將圖(1)中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)角α,使α=2∠BAC,得到如圖(3)所示的△AC′D,連接DB、C′C,得到四邊形BCC′D,發(fā)現(xiàn)它是矩形,請(qǐng)證明這個(gè)結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上點(diǎn)C的坐標(biāo)為4,-1).

1請(qǐng)以y軸為對(duì)稱軸畫出與△ABC對(duì)稱的△A1B1C1,并直接寫出點(diǎn)A1、B1、C1的坐標(biāo)

2ABC的面積是

3點(diǎn)Pa+1,b-1與點(diǎn)C關(guān)于x軸對(duì)稱,a= b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.

(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一只青蛙在圓周上標(biāo)有數(shù)字的五個(gè)點(diǎn)上跳,若它停在奇數(shù)點(diǎn)上,則下一次沿順時(shí)針方向跳兩個(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則下一次沿逆時(shí)針方向跳一個(gè)點(diǎn),若青蛙從4這點(diǎn)開始跳,則經(jīng)2015次跳后它停在數(shù)對(duì)應(yīng)的點(diǎn)上.

查看答案和解析>>

同步練習(xí)冊(cè)答案