【題目】為落實省新課改精神,某市各校都開設了“知識拓展類”“體藝特長類”“實踐活動類”三類拓展性課程.某校為了解在周二第六節(jié)開設的“體藝特長類”中各門課程學生的參與情況,隨機調查了部分學生作為樣本進行統(tǒng)計,繪制了如圖所示的統(tǒng)計圖(部分信息未給出).
根據(jù)圖中信息,解答下列問題:
(1)求被調查學生的總人數(shù);
(2)請把條形統(tǒng)計圖補充完整;
(3)若該校有150名學生參加了“體藝特長類”中的各門課程,請估計參加棋類的學生人數(shù);
(4)根據(jù)調查結果,請你給學校提出一條合理化建議.
【答案】(1)40人;(2)見解析;(3)30人;(4)因為參加A球類的學生人數(shù)最多,所以建議學校增加球類課時量,希望學校多點開展拓展性課程,豐富學生的課外生活等等
【解析】
(1)根據(jù)“被調查學生的總人數(shù)=參加球類的人數(shù)÷其所占比例”即可得出結論;
(2)根據(jù)“參加舞蹈類的學生人數(shù)=被調查學生的總人數(shù)×其所占比例”可求出參加舞蹈類的學生人數(shù),繼而求得參加棋類的學生人數(shù)即可把條形統(tǒng)計圖補充完整;
(3)用總人數(shù)乘以E棋類所占總體的比例即可得出結論;
(4)根據(jù)條形統(tǒng)計圖的特點,找出一條建議即可.
(1)12÷30%=40,
答:被調查學生的總人數(shù)為40人;
(2)40×10%=4(人),40﹣12﹣10﹣4﹣6=8(人),
補全圖形如圖所示:
(3)150×=30(人),
答:估計參加棋類的學生人數(shù)為30人,
(4)因為參加A球類的學生人數(shù)最多,所以建議學校增加球類課時量,希望學校多點開展拓展性課程,豐富學生的課外生活等等.
科目:初中數(shù)學 來源: 題型:
【題目】將7張相同的小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好被分割為兩個長方形,面積分別為S1和S2.已知小長方形紙片的長為a,寬為b,且a>b.
⑴當a=9,b=3,AD=30時,長方形ABCD的面積是 ,S1﹣S2的值為 .
⑵當AD=40時,請用含a、b的式子表示S1﹣S2的值;
⑶若AB長度為定值,AD變長,將這7張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),而S1﹣S2的值總保持不變,則a、b滿足的什么關系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成,需支付運費4800元.已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數(shù)是甲車的2倍,且乙車每趟運費比甲車少200元.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在⊙O上,連接CO并延長交弦AB于點D,,連接AC、OB,若CD=40,AC=.
(1)求弦AB的長;
(2)求sin∠ABO的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為鼓勵居民節(jié)約用水,采用分段計費的方法按月計算每戶家庭的水費,月用水量不超過30立方米時,按2元/立方米計費;月用水量超過30立方米時,其中的30立方米仍按2元/立方米收費,超過部分按2.5元/立方米計費.設每戶家庭月用水量為x立方米.
(1)當x不超過30時,應收多少水費(用x的代數(shù)式表示);當x超過30時,應收多少水費(用x的代數(shù)式表示);
(2)小明家四月份用水20立方米,五月份用水36立方米,請幫小明計算一下他家這兩個月一共應交多少元水費?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的單位正方形網(wǎng)格中,△ABC經(jīng)過平移后得到△A1B1C1,已知在AC上一點P(2.4,2)平移后的對應點為P1,點P1繞點O逆時針旋轉180°,得到對應點P2,則P2點的坐標為
A.(1.4,-1) B.(1.5,2) C.(1.6,1) D.(2.4,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點E,AD=8cm,BC=4cm,AB=5cm.從初始時刻開始,動點P,Q 分別從點A,B同時出發(fā),運動速度均為1cm/s,動點P沿A﹣B﹣﹣C﹣﹣E的方向運動,到點E停止;動點Q沿B﹣﹣C﹣﹣E﹣﹣D的方向運動,到點D停止,設運動時間為xs,△PAQ的面積為ycm2,(這里規(guī)定:線段是面積為0的三角形)
解答下列問題:
(1)當x=2s時,y= cm2;當x=s時,y= cm2.
(2)當5≤x≤14 時,求y與x之間的函數(shù)關系式.
(3)當動點P在線段BC上運動時,求出時x的值.
(4)直接寫出在整個運動過程中,使PQ與四邊形ABCE的對角線平行的所有x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學問題:用邊長相等的正三角形、正方形和正六邊形能否進行平面圖形的鑲嵌?
問題探究:為了解決上述數(shù)學問題,我們采用分類討論的思想方法去進行探究.
探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進行平面圖形的鑲嵌?
第一類:選正三角形.因為正三角形的每一個內(nèi)角是60°,所以在鑲嵌平面時,圍繞某一點有6個正三角形的內(nèi)角可以拼成一個周角,所以用正三角形可以進行平面圖形的鑲嵌.
第二類:選正方形.因為正方形的每一個內(nèi)角是90°,所以在鑲嵌平面時,圍繞某一點有4個正方形的內(nèi)角可以拼成一個周角,所以用正方形也可以進行平面圖形的鑲嵌.
第三類:選正六邊形.(仿照上述方法,寫出探究過程及結論)
探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進行平面圖形的鑲嵌?
第四類:選正三角形和正方形
在鑲嵌平面時,設圍繞某一點有x個正三角形和y個正方形的內(nèi)角可以拼成個周角.根據(jù)題意,可得方程
60x+90y=360
整理,得2x+3y=12.
我們可以找到唯一組適合方程的正整數(shù)解為.
鑲嵌平面時,在一個頂點周圍圍繞著3個正三角形和2個正方形的內(nèi)角可以拼成一個周角,所以用正三角形和正方形可以進行平面鑲嵌
第五類:選正三角形和正六邊形.(仿照上述方法,寫出探究過程及結論)
第六類:選正方形和正六邊形,(不寫探究過程,只寫出結論)
探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?
第七類:選正三角形、正方形和正六邊形三種圖形.(不寫探究過程,只寫結論),
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連結BF,CE.下列說法:①△ABD和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com