【題目】如圖1,在ABCD中,AE⊥BC于E,E恰為BC的中點.tanB=2.
(1)求證:AD=AE;
(2)如圖2.點P在BE上,作EF⊥DP于點F,連結AF.線段DF、EF與AF之間有怎樣的數(shù)量關系?并說明理由;
(3)請你在圖3中畫圖探究:當P為射線EC,上任意一點(P不與點E重合)時,作EF⊥DP于點F,連結AF,線段DF、EF與AF之間有怎樣的數(shù)量關系?請在圖3中補全圖形,直接寫出結論.
【答案】(1)見解析;(2)DF﹣EF=AF,見解析;(3)①當EP在線段BC上時,有DF﹣EF=AF,②當點F在PD上,DF+EF=AF,③當點F在PD的延長線上,EF﹣DF=AF,見解析.
【解析】
(1)首先根據(jù)∠B的正切值知:AE=2BE,而E是BC的中點,結合平行四邊形的對邊相等即可得證.
(2)此題要通過構造全等三角形來求解;作GA⊥AF,交BD于G,通過證△AFE≌△AGD,來得到△AFG是等腰直角三角形且EF=GD,由此得證.
(3)輔助線作法和解法同(2),只不過結論有所不同而已.
(1)證明:如圖1中,
∵tanB=2,
∴AE=2BE;
∵E是BC中點,
∴BC=2BE,
即AE=BC;
又∵四邊形ABCD是平行四邊形,則AD=BC=AE;
(2)證明:作AG⊥AF,交DP于G;(如圖2)
∵AD∥BC,
∴∠ADG=∠DPC;
∵∠AEP=∠EFP=90°,
∴∠PEF+∠EPF=∠PEF+∠AEF=90°,
即∠ADG=∠AEF=∠FPE;
又∵AE=AD,∠FAE=∠GAD=90°﹣∠EAG,
∴△AFE≌△AGD,
∴AF=AG,即△AFG是等腰直角三角形,且EF=DG;
∴FG=AF,且DF=DG+GF=EF+FG,
故DF﹣EF=AF;
(3)解:如圖3,
①當EP在線段BC上時,有DF﹣EF=AF,
證明方法類似(2).
②如圖3﹣1中,點F在PD上,DF+EF=AF.
理由:將△AEF繞點A逆時針旋轉90°得到△ADG
∴△AEF≌△ADG,
同(1)可得:DG=EF,AG=AF,
GF=AF,
則EF+DF=AF.
③如圖3﹣2,點F在PD的延長線上,EF﹣DF=AF,
證明方法類似(2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以AC為直徑的⊙O交AB于點D,連接CD,∠BCD=∠A.
(1)求證:BC是⊙O的切線;
(2)若BC=5,BD=3,求點O到CD的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王是“新星廠”的一名工人,請你閱讀下列信息:
信息一:工人工作時間:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生產甲、乙兩種產品的件數(shù)與所用時間的關系見下表:
生產甲種產品數(shù)(件) | 生產乙種產品數(shù)(件) | 所用時間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件計酬,每生產一件甲種產品得1.50元,每生產一件乙種產品得2.80元;
信息四:該廠工人每月收入由底薪和計酬工資兩部分構成,小王每月的底薪為1900元.請根據(jù)以上信息,解答下列問題:
(1)小王每生產一件甲種產品和一件乙種產品分別需要多少分鐘;
(2)2018年1月工廠要求小王生產甲種產品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產的甲、乙兩種產品分別是多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.
(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?
(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍.設購進A型無人機x臺,總費用為y元.
①求y與x的關系式;
②購進A型、B型無人機各多少臺,才能使總費用最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長線上一點G,作GD⊥AO于點D,交AC于點E,交⊙O于點F,M是GE的中點,連接CF,CM.
(1)判斷CM與⊙O的位置關系,并說明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年夏季全國各地總有未成年人因溺水而喪失生命,令人痛心疾首.今年某校為確保學生安全,開展了“遠離溺水·珍愛生命”的防溺水安全知識競賽.現(xiàn)從該校七、八年級中各隨機抽取10名學生的競賽成績(百分制)進行整理、描述和分析(成績得分用x表示,共分成四組:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面給出了部分信息:
七年級10名學生的競賽成績是:99,80,99,86,99,96,96,100,89,82
八年級10名學生的競賽成績在C組中的數(shù)據(jù)是:94,90,94
根據(jù)以上信息,解答下列問題:
(1)直接寫出上述圖表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù),你認為該校七、八年級中哪個年級學生掌握防溺水安全知識較好?請說明理由(一條理由即可);
(3)該校七、八年級共730人參加了此次競賽活動,估計參加此次競賽活動成績優(yōu)秀(x≧90)的學生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程或方程組解應用題:
某校為美化校園,計劃對一些區(qū)域進行綠化,安排了甲、乙兩個工程隊完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且兩隊在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天,求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司投入研發(fā)費用40萬元(40萬元只計入第一年成本),成功研發(fā)出一種產品.公司按訂單生產(產量=銷售量),第一年該產品正式投產后,生產成本為4元/件.此產品年銷售量y(萬件)與售價x(元件)之間滿足函數(shù)關系式y=﹣x+20.
(1)求這種產品第一年的利潤W(萬元)與售價x(元件)滿足的函數(shù)關系式;
(2)該產品第一年的利潤為24萬元,那么該產品第一年的售價是多少?
(3)第二年,該公司將第一年的利潤24萬元(24萬元只計入第二年成本)再次投入研發(fā),使產品的生產成本降為3元/件.為保持市場占有率,公司規(guī)定第二年產品售價不超過第一年的售價,另外受產能限制,銷售量無法超過10萬件.請計算該公司第二年的利潤W2至少為多少萬元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:四邊形ABCD的對角線AC、BD相交于點O,給出下列4個條件:①AB∥CD;②OA=OC;③AB=CD;④AD∥BC從中任取兩個條件,能推出四邊形ABCD是平行四邊形的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com