【題目】計算下面各題
(1)計算: +(2011﹣ 0﹣( 1
(2)計算:( + )÷

【答案】
(1)解:原式=2 +1﹣2=2 ﹣1
(2)解:原式= =
【解析】(1)原式利用二次根式性質(zhì),零指數(shù)冪、負整數(shù)指數(shù)冪法則計算即可得到結(jié)果;(2)原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除法法則變形,約分即可得到結(jié)果.
【考點精析】利用分式的混合運算和零指數(shù)冪法則對題目進行判斷即可得到答案,需要熟知運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]};零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF= ,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(  )
A.51=
B.x2?x3=x6
C.(a+b)2=a2+b2
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6cm,AD=4cm,點M是邊AB的中點,點P是矩形邊上的一個動點,點P從M出發(fā)在矩形的邊上沿著逆時針方向運動,則當點P沿著矩形的邊逆時針旋轉(zhuǎn)一周時,△DMP面積剛好為5cm2的時刻有(
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形。

(1)拼成的大正方形的面積與邊長分別是多少?

(2)你能在下圖3×3方格中,連接四個格點,組成面積為5的正方形嗎?

(3)能把十個小正方形組成的圖形紙,剪開并拼成更大的正方形嗎?若能,在下圖中畫出圖形,并求出它的邊長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(a2-4a+2)(a2-4a+6)+4進行因式分解的過程:

解:設a2-4a=y(tǒng),則

原式=(y+2)(y+6)+4(第一步)

=y(tǒng)2+8y+16(第二步)

=(y+4)2(第三步)

=(a2-4a+4)2.(第四步)

(1)該同學因式分解的結(jié)果是否徹底:________(徹底不徹底”);

(2)若不徹底,請你直接寫出因式分解的最后結(jié)果:________;

(3)請你模仿以上方法對多項式(x2-2x)(x2-2x+2)+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點P在BC上,點Q在⊙O上,且OP⊥PQ.

(1)如圖1,當PQ∥AB時,求PQ的長度;
(2)如圖2,當點P在BC上移動時,求PQ長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如今,網(wǎng)上購物已成為一種新的消費時尚,精品書店想購買一種賀年卡在元旦時銷售,在互聯(lián)網(wǎng)上搜索了甲、乙兩家網(wǎng)

店(如圖所示),已知兩家網(wǎng)店的這種賀年卡的質(zhì)量相同,請看圖回答下列問題:

(1)假若精品書店想購買x張賀年卡,那么在甲、乙兩家網(wǎng)店分別需要花多少錢(用含有x的式子表示)?(提示:如需付運費時運費只需付一次,即8元)

(2)精品書店打算購買300張賀年卡,選擇哪家網(wǎng)店更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初中生在數(shù)學運算中使用計算器的現(xiàn)象越來越普遍,某校一興趣小組隨機抽查了本校若干名學生使用計算器的情況.以下是根據(jù)抽查結(jié)果繪制出的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
請根據(jù)上述統(tǒng)計圖提供的信息,完成下列問題:
(1)這次抽查的樣本容量是;
(2)請補全上述條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)若從這次接受調(diào)查的學生中,隨機抽查一名學生恰好是“不常用”計算器的概率是多少?

查看答案和解析>>

同步練習冊答案