精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,在矩形ABCD中,AC為對角線,延長CD至點E使CE=CA,連接AE。F為AB上一點,且BF=DE,連接FC.

(1)若DE=1,CF=2,求CD的長。

(2)如圖2,點G為線段AE的中點,連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.

【答案】(1)3;(2)見解析.

【解析】分析:(1)先證明△ADE≌△CBF,可得AE=CF= ,設CD=x,則CE=AC=x+1 ,在Rt△ACD中根據勾股定理列方程求解;

(2)延長BGCD的延長線于點M,先證明ABGEMG,從而可得CE+AF= 2CD,由等腰三角形的性質和三角形外角的性質可求M=∠MCG=∠ACG=∠ABG=15°,從而ACD=30,cos∠ACD=,進而可證明結論.

詳解:(1)解:矩形ABCD ,

AD=BC,∠ADC=∠ABC=90 .

∠ADE+∠ADC=180 ,

∠ADC=90

∴∠ADC=∠ABC .

∵BF=DE ,

△ADE≌△CBF ,

AE=CF= ,

在Rt△ABC中,

AD= ,

設CD=x,則CE=AC=x+1 ,

解得: ,

即: ;

(2)證明:延長BG交CD的延長線于點M

易證△ABG≌EMG,

GM=GB,AB=CD,∠ABG=∠M,

又BF=ED,

∴AF=ME.

∴CE+AF=CE+ME=2CD,

連接CG, 在Rt△MCB,

CG=MG,

∠M=∠MCG.

又CA=CE,且點G是AE的中點,

∠MCG=∠ACG,

又∠BHC=∠M+∠MCG+∠ACG, ∠BHC+∠ABG=60,

∴∠M=∠MCG=∠ACG=∠ABG=15

ACD=30

∵cos∠ACD=,

,

∴AF+CE=AC.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點DE分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DEDC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數量關系是 ,位置關系是

(2)探究證明

ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BDCE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將BCD沿直線CD折疊,使點B恰好落在OA邊上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系.

(1)求點E坐標及經過O,D,C三點的拋物線的解析式;

(2)一動點P從點C出發(fā),沿CB以每秒2個單位長的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長的速度向點C運動,當點P到達點B時,兩點同時停止運動.設運動時間為t秒,當t為何值時,DP=DQ;

(3)若點N在(2)中的拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使得以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠B=C,FDBC,DEAB,AFD=158°,求∠EDF的度數。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,ABC,AB=AC,BC=BD,AD=DE=EB,求∠A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AD平分∠BACBC于點D,DEAB于點E,則下列結論:①AD平分∠CDE;②∠BAC=BDE;③DE平分∠ADB;④若AC=4BE,則SABC=8SBDE其中正確的有(

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示, ABC是直角三角形,∠A=90°,D是斜邊BC的中點,E,F分別是AB,AC邊上的動點,DEDF

(1)如圖(1),連接AD,若AB=AC=17,CF=5,求線段EF的長.

(2)如圖(2),若AB≠AC,寫出線段EF與線段BE,CF之間的等量關系,并寫出證明過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是由27個相同的小立方塊搭成的幾何體,它的三個視圖是3×3的正方形,若拿掉若干個小立方塊(幾何體不倒掉),其三個視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個數為( 。

A. 10 B. 12 C. 15 D. 18

查看答案和解析>>

同步練習冊答案