【題目】如圖,在正方形ABCD中,邊AD繞點A順時針旋轉(zhuǎn)角度m(0°<m<360°),得到線段AP,連接PB,PC.當(dāng)△BPC是等腰三角形時,m的值為________

【答案】30°60°150°300°

【解析】

分別畫出m=30°60°150°300°時的圖形,根據(jù)圖形即可得到答案.

如圖1,當(dāng)m=30°時,

BP=BC,BPC是等腰三角形;

如圖2,當(dāng)m=60°時,

PB=PC,BPC是等腰三角形;

如圖3,當(dāng)m=150°時,

PB=BCBPC是等腰三角形;

如圖4,當(dāng)m=300°時,

PB=PCBPC是等腰三角形;

綜上所述,m的值為30°60°150°300°,

故答案為30°60°150°300°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,BD是中線,延長BCE,使CE=CD

1)求證:DB=DE

2)過點DDF垂直BE,垂足為F,若CF=3,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角ABC,BDAC于點D,CEAB于點E,BDCE相交于點O,OB=OC

(1)求證:ABC是等腰三角形;

(2)判定點O是否在∠BAC的角平分線上,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖4,點A,BC在數(shù)軸上表示的數(shù)分別是1,,點E到點B,C的距離相等,點P從點A出發(fā),向左運動,速度是每秒0.3個單位長度.設(shè)運動的時間是t秒.

1)點E表示的數(shù)是________;

2)在t3,t4這兩個時刻,使點P更接近原點O的時間是哪一個?

3)若點P分別t8tp兩個不同的時刻,到點E的距離相等,求p的值;

4)設(shè)點M在數(shù)軸上表示的數(shù)是m,點N在數(shù)軸上表示的數(shù)是n,式子________的值可以體現(xiàn)點M和點N之間的距離,這個式子的值越小,兩個點的距離越近.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張華想用一塊面積為400cm2的正方形紙片,沿著邊的方向剪出一塊面積為300cm2的長方形紙片,使它的長寬之比為32.他不知能否裁得出來,正在發(fā)愁.李明見了說:別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.你同意李明的說法嗎?張華能用這塊紙片裁出符合要求的紙片嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC平分∠BAD,CEABE,CFADF,且BCCD

1)求證:△BCE≌△DCF;

2)若AB15,AD7,BC5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=3,點O為對角線BD的中點,點P從點A出發(fā),沿折線AD﹣DO﹣OC以每秒1個單位長度的速度向終點C運動,當(dāng)點P與點A不重合時,過點P作PQ⊥AB于點Q,以PQ為邊向右作正方形PQMN,設(shè)正方形PQMN與△ABD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).

(1)求點N落在BD上時t的值;

(2)直接寫出點O在正方形PQMN內(nèi)部時t的取值范圍;

(3)當(dāng)點P在折線AD﹣DO上運動時,求S與t之間的函數(shù)關(guān)系式;

(4)直接寫出直線DN平分△BCD面積時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠B40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE40°DE交線段AC于點E

1)若∠BDA115°,則∠BAD  °,∠DEC  °;

2)若DCAB,求證:ABD≌△DCE;

3)在點D的運動過程中,ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù);若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按下列程序計算,把答案填寫在表格里,然后看看有什么規(guī)律,想想為什么會有

這個規(guī)律?

(1)填寫表內(nèi)空格:

輸入

3

2

-2

輸出答案

0

(2)你發(fā)現(xiàn)的規(guī)律是____________.

(3)用簡要過程說明你發(fā)現(xiàn)的規(guī)律的正確性.

查看答案和解析>>

同步練習(xí)冊答案