【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)請直接寫出y與x的函數(shù)關(guān)系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
【答案】
(1)解:設(shè)y=kx+b,
把(22,36)與(24,32)代入得: ,
解得: ,
則y=﹣2x+80
(2)解:設(shè)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是x元,
根據(jù)題意得:(x﹣20)y=150,
則(x﹣20)(﹣2x+80)=150,
整理得:x2﹣60x+875=0,
(x﹣25)(x﹣35)=0,
解得:x1=25,x2=35(不合題意舍去),
答:每本紀念冊的銷售單價是25元
(3)解:由題意可得:
w=(x﹣20)(﹣2x+80)
=﹣2x2+120x﹣1600
=﹣2(x﹣30)2+200,
此時當x=30時,w最大,
又∵售價不低于20元且不高于28元,
∴x<30時,y隨x的增大而增大,即當x=28時,w最大=﹣2(28﹣30)2+200=192(元),
答:該紀念冊銷售單價定為28元時,才能使文具店銷售該紀念冊所獲利潤最大,最大利潤是192元
【解析】(1)設(shè)y=kx+b,根據(jù)題意,利用待定系數(shù)法確定出y與x的函數(shù)關(guān)系式即可;(2)根據(jù)題意結(jié)合銷量×每本的利潤=150,進而求出答案;(3)根據(jù)題意結(jié)合銷量×每本的利潤=w,進而利用二次函數(shù)增減性求出答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,學(xué)校組織學(xué)生去某景點游玩,甲旅行社說:“如果帶隊的一名老師購買全票,則學(xué)生享受半價優(yōu)惠”; 乙旅行社說:“所有人按全票價的六折優(yōu)惠”.已知全票價為a元,學(xué)生有x人,帶隊老師有1人.
(1)試用含a和x的式子表示甲、乙旅行社的收費;
(2)若有30名學(xué)生參加本次活動,請你為他們選擇一家更優(yōu)惠的旅行社.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x交于A(﹣1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知C是AB的中點,D是AC的中點,E是BC的中點.
(1)若AB=18cm,求DE的長;(2)若CE=5cm,求DB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,善于思考的小明進行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為正整數(shù)),則有a+b=m2+2n2+2mn,
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= , b= .
(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: + = ( + )2;(答案不唯一)
(3)若a+4=(m+n)2 ,且a、m、n均為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E
(1)求A、B的坐標;
(2)求直線BC的解析式;
(3)當線段DE的長度最大時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)用適當?shù)姆椒ń夥匠蹋?
①(x﹣2)2=2x﹣4
②x2﹣2x﹣8=0.
(2)先化簡,再求值: ÷( ﹣a+1),其中a是方程x2﹣x=6的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=12,DC=14,把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖乙),此時AB與 CD1交于點O,則線段AD1的長為( )
A.6
B.10
C.8
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
計算:.
解法一:原式=
解法二:原式=(-)÷[( )-( )]=÷=-×3=-.
解法三:原式的倒數(shù)為()÷(-)=×(-30)-×(-30)+×(-30)-×(-30)=-20+3-5+12=-10,
故原式=-.
(1)上述解法得出的結(jié)果不同,肯定有錯誤的解法,你認為解法________是錯誤的,在正確的解法中,你認為解法________最簡捷;
(2)利用(1)中你認為最簡捷的解法計算:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com