【題目】將兩張完全相同的矩形紙片ABCD、FBED按如圖方式放置,BD為重合的對角線.重疊部分為四邊形DHBG.
(1)試判斷四邊形DHBG為何種特殊的四邊形,并說明理由;
(2)若AB=8,AD=4,求四邊形DHBG的面積.
【答案】(1)四邊形DHBG是菱形,理由見解析;(2)20.
【解析】解:(1)四邊形DHBG是菱形.
理由如下:
∵四邊形ABCD、FBED是完全相同的矩形,
∴∠A=∠E=90°,AD=ED,AB=EB.
∴△DAB≌△DEB(SAS),
∴∠ABD=∠EBD.
∵AB∥CD,DF∥BE,
∴四邊形DHBG是平行四邊形,∠HDB=∠EBD,
∴∠HDB=∠HBD,
∴DH=BH,
∴四邊形DHBG是菱形.
(2)由(1),設DH=BH=x,則AH=8x,
在Rt△ADH中,AD +AH =DH ,即4 +(8x)=x ,
解得:x=5,即BH=5,
∴菱形DHBG的面積為HBAD=5×4=20.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸相交于點B,與y軸相交于點A,點E為線段AB中點,∠ABO的平分線BD與y軸相較于點D,點A、C關于點O對稱.
(1)求線段DE的長;
(2)一個動點P從點D出發(fā),沿適當?shù)穆窂竭\動到直線BC上的點F,再沿射線CB方向移動2個單位到點G,最后從點G沿適當?shù)穆窂竭\動到點E處,當P的運動路徑最短時,求此時點G的坐標;
(3)將△ADE繞點A順時針方向旋轉,旋轉角度α(0<α≤180°),在旋轉過程中DE所在的直線分別與直線BC、直線AC相交于點M、點N,是否存在某一時刻使△CMN為等腰三角形,若存在,請求出CM的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會干部對校學生會倡導的“助殘”自愿捐款活動進行抽樣調查,得到一組學生捐款情況的數(shù)據(jù),下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形高度之比為3:4:5:8:2,又知此次調查中捐15元和20元的人數(shù)共39人.
(1)他們一共抽查了多少人捐款數(shù)不少于20元的概率是多少?
(2)這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?
(3)若該校共有2310名學生,請估算全校學生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進甲、乙兩種商品,已知每件甲種商品的價格比每件乙種商品的價格貴10元,用350元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價格各是多少元?
(2)計劃購買這兩種商品共50件,且投入的經(jīng)費不超過3200元,那么,最多可購買多少件甲種商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店如果將進貨價為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高售價,減少進貨量的方法增加利潤,已知這種商品每漲價0.5元,其銷量就減少10件.
(1)要使每天獲得利潤700元,請你幫忙確定售價;
(2)問售價定在多少時能使每天獲得的利潤最多?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,梯形ABCD中,AD∥BC,∠C=90°,BA=BC.動點E、F同時從點B出發(fā),點E沿折線 BA–AD–DC運動到點C時停止運動,點F沿BC運動到點C時停止運動,它們運動時的速度都是1 cm/s.設E出發(fā)t s時,△EBF的面積為y cm2.已知y與t的函數(shù)圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.
請根據(jù)圖中的信息,解答下列問題:
(1)AD= cm,BC= cm;
(2)求a的值,并用文字說明點N所表示的實際意義;
(3)直接寫出當自變量t為何值時,函數(shù)y的值等于5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】清朝數(shù)學家梅文鼎的著作《方程論》中有這樣一道題:山田三畝,場地六畝,共折實田四畝七分;又山田五畝,場地三畝,共折實田五畝五分,問每畝山田折實田多少,
每畝場地折實田多少?
譯文為:假如有山田3畝,場地6畝,其產(chǎn)糧相當于實田4.7畝;又山田5畝,場地3畝,其產(chǎn)糧相當于實田5.5畝,問每畝山田和每畝場地產(chǎn)糧各相當于實田多少畝?請你解答.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為30m,寬為24m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】哈爾濱地鐵“二號線”正在進行修建,現(xiàn)有大量的殘土需要運輸.某車隊有載重量為8噸、10噸的卡車共12臺,全部車輛運輸一次可以運輸110噸殘土.
(1)求該車隊有載重量8噸、10噸的卡車各多少輛?
(2)隨著工程的進展,該車隊需要一次運輸殘土不低于165噸,為了完成任務,該車隊準備再新購進這兩種卡車共6輛,則最多購進載重量為8噸的卡車多少輛?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com