【題目】一次函數(shù)y=-2(x-3)在y軸上的截距是( )
A.2B.-3C.6D.6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:線段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學(xué)的作業(yè):
甲:(1)以點(diǎn)C為圓心,AB長為半徑畫;
(2)以點(diǎn)A為圓心,BC長為半徑畫弧;
(3)兩弧在BC上方交于點(diǎn)D,連接AD,CD,四邊形ABCD即為所求(如圖1)
乙:(1)連接AC,作線段AC的垂直平分線,交AC于點(diǎn)M;
(2)連接BM并延長,在延長線上取一點(diǎn)D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).
對(duì)于兩人的作業(yè),下列說法正確的是( 。
A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì),乙不對(duì) D. 甲不對(duì),乙對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=-2x+1上有兩個(gè)點(diǎn)A,B,且A(-2,m),B(1,n),則m,n的大小關(guān)系為m_____n
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)廣場上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測得落在平臺(tái)上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為(10,8),沿直線OD折疊矩形,使點(diǎn)A正好落在BC上的E處,E點(diǎn)坐標(biāo)為(6,8),拋物線y=ax2+bx+c經(jīng)過O、A、E三點(diǎn).
(1)求此拋物線的解析式;
(2)求AD的長;
(3)點(diǎn)P是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),當(dāng)△PAD的周長最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某小區(qū)某月家庭用水量的情況,從該小區(qū)隨機(jī)抽取部分家庭進(jìn)行調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)繪制的統(tǒng)計(jì)圖表的一部分
分組 | 家庭用水量x/噸 | 家庭數(shù)/戶 |
A | 0≤x≤4.0 | 4 |
B | 4.0<x≤6.5 | 13 |
C | 6.5<x≤9.0 | |
D | 9.0<x≤11.5 | |
E | 11.5<x≤14.0 | 6 |
F | x>4.0 | 3 |
根據(jù)以上信息,解答下列問題
(1)家庭用水量在4.0<x≤6.5范圍內(nèi)的家庭有 戶,在6.5<x≤9.0范圍內(nèi)的家庭數(shù)占被調(diào)查家庭數(shù)的百分比是 %;
(2)本次調(diào)查的家庭數(shù)為 戶,家庭用水量在9.0<x≤11.5范圍內(nèi)的家庭數(shù)占被調(diào)查家庭數(shù)的百分比是 %;
(3)家庭用水量的中位數(shù)落在 組;
(4)若該小區(qū)共有200戶家庭,請(qǐng)估計(jì)該月用水量不超過9.0噸的家庭數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將半圓繞直徑旋轉(zhuǎn)一周,形成的幾何體是________;將直角三角形以一條直角邊為軸旋轉(zhuǎn)一周,形成的幾何體是________;假如我們把筆尖看作一個(gè)點(diǎn),當(dāng)筆尖在紙上移動(dòng)時(shí),就能畫出線,說明了________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使⊙O經(jīng)過A、C兩點(diǎn),且圓心落在AB邊上;
(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法.)
(2)求證:BC是(1)中所作⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com