精英家教網 > 初中數學 > 題目詳情

【題目】已知;如圖,在△ABC中,ABBC,∠ABC90度.FAB延長線上一點,點EBC上,BEBF,連接AE、EFCF

1)求證:AECF;(2)若∠CAE30°,求∠EFC的度數.

【答案】1)見解析;(2)∠EFC=30°.

【解析】

1)根據已知利用SAS判定ABE≌△CBF,由全等三角形的對應邊相等就可得到AE=CF;(2)根據已知利用角之間的關系可求得∠EFC的度數.

1)證明:在ABECBF中,

,

∴△ABE≌△CBFSAS).

AECF

2)解:∵ABBC,∠ABC90°,∠CAE30°,

∴∠CAB=∠ACB180°90°)=45°,∠EAB45°30°15°

∵△ABE≌△CBF,

∴∠EAB=∠FCB15°

BEBF,∠EBF90°,

∴∠BFE=∠FEB45°

∴∠EFC180°90°15°45°30°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,設點P到原點O的距離為ρ,OPx軸正方向的夾角為α,則用[ρ,α]表示點P的極坐標,例如:點P的坐標為(1,1),則其極坐標為[,45°].若點Q的極坐標為[4,120°],則點Q的坐標為(  )

A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm.

(1)AB上取一點D,當AD=_________cm時,△ACD∽△ABC.

(2)AC的延長線上取一點E,當CE=________cm時,△AEB∽△ABC此時BEDC有怎樣的位置關系?________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若直線經過點,直線經過點,且關于軸對稱,則的交點坐標為(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EFAB于點E,交AC于點F.DBC邊的中點,M為線段EF上一個動點,則BDM的周長的最小值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P,Q是直線y=﹣上的兩點,PQ的左側,且滿足OPOQOPOQ,則點P的坐標是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)的頂點,的坐標分別為

1)請在如圖所示的網格平面內作出平面直角坐標系;

2)點軸的距離是   ;

3)請作出關于軸對稱的;

4)寫出點的坐標   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】天津市奧林匹克中心體育場—“水滴位于天津市西南部的奧林匹克中心內,某校九年級學生由距水滴”10千米的學校出發(fā)前往參觀,一部分同學騎自行車先走,過了20分鐘后,其余同學乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車同學速度的2倍,求騎車同學的速度.

1)設騎車同學的速度為x千米/時,利用速度、時間、路程之間的關系填寫下表.(要求:填上適當的代數式,完成表格)

速度(千米/時)

所用時間(時)

所走的路程(千米)

騎自行車

x

10

乘汽車

10

2)列出方程(組),并求出問題的解.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的斜邊ABx軸上,點Cy軸上,∠ACB=90°,OC、OB的長分別是一元二次方程x2﹣6x+8=0的兩個根,且OCOB.

(1)求點A的坐標;

(2)D是線段AB上的一個動點(點D不與點A,B重合),過點D的直線ly軸平行,直線l交邊AC或邊BC于點P,設點D的橫坐標為t,線段DP的長為d,求d關于t的函數解析式;

(3)在(2)的條件下,當d=時,請你直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案