【題目】如圖1,四邊形ABCD是正方形,點(diǎn)E是邊BC上一點(diǎn),點(diǎn)F在射線CM上,∠AEF=90°,AE=EF,過點(diǎn)F作射線BC的垂線,垂足為H,連接AC.
(1)試判斷BE與FH的數(shù)量關(guān)系,并說明理由;
(2)求證:∠ACF=90°;
(3)連接AF,過A、E、F三點(diǎn)作圓,如圖2,若EC=4,∠CEF=15°,求 的長(zhǎng).

【答案】
(1)解:BE=FH.

證明:∵∠AEF=90°,∠ABC=90°,

∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,

∴∠HEF=∠BAE,

在△ABE和△EHF中,

,

∴△ABE≌△EHF(AAS)

∴BE=FH


(2)解:由(1)得BE=FH,AB=EH,

∵BC=AB,

∴BE=CH,

∴CH=FH,

∴∠HCF=45°,

∵四邊形ABCD是正方形,

∴∠ACB=45°,

∴∠ACF=180°﹣∠HCF﹣∠ACB=90°


(3)解:由(2)知∠HCF=45°,∴CF= FH.

∠CME=∠HCF﹣∠CEF=45°﹣15°=30°.

如圖2,過點(diǎn)C作CP⊥EF于P,則CP= CF= FH.

∵∠CEP=∠FEH,∠CPE=∠FHE=90°,

∴△CPE∽△FHE.

,即 ,

∴EF=4

∵△AEF為等腰直角三角形,∴AF=8.

取AF中點(diǎn)O,連接OE,則OE=OA=4,∠AOE=90°,

的弧長(zhǎng)為: =2π.


【解析】(1)利用ABE≌△EHF求證BE=FH,(2)由BE=FH,AB=EH,推出CH=FH,得到∠HCF=45°,由四邊形ABCD是正方形,所以∠ACB=45°,得出∠ACF=90°,(3)作CP⊥EF于P,利用相似三角形△CPE∽△FHE,求出EF,利用公式求出 的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:
①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( 。

A.②④⑤⑥
B.①③⑤⑥
C.②③④⑥
D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).

(1)如圖1,當(dāng)k=1時(shí),直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)在(1)的條件下,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AB下方,試求出△ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點(diǎn)C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),在直線y=kx+1上是否存在唯一一點(diǎn)Q,使得∠OQC=90°?若存在,請(qǐng)求出此時(shí)k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一漁船由西往東航行,在A點(diǎn)測(cè)得海島C位于北偏東60°的方向,前進(jìn)20海里到達(dá)B點(diǎn),此時(shí),測(cè)得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于海里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥FC,D是AB上一點(diǎn),DF交AC于點(diǎn)E,DE=FE,分別延長(zhǎng)FD和CB交于點(diǎn)G.
(1)求證:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用火柴棒按下列方式搭三角形:

(1)填寫下面表

三角形個(gè)數(shù)

1

2

3

4

火柴棒根數(shù)

(2)10個(gè)這樣的三角形需要 根火柴棒.

(3)n個(gè)這樣的三角形需要 根火柴棒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)校開展孝敬父母,從家務(wù)勞動(dòng)做起活動(dòng)的實(shí)施情況,該校抽取八年級(jí)名學(xué)生,調(diào)查他們一周(按七天計(jì)算)做家務(wù)所用時(shí)間(單位:小時(shí))得到一組數(shù)據(jù),繪制成下表:

時(shí)間(小時(shí))

劃記

人數(shù)

所占百分比

正正正

正正正

正正

合計(jì)

(1)請(qǐng)?zhí)畋碇形赐瓿傻牟糠郑?/span>

(2)根據(jù)以上信息判斷,每周做家務(wù)的時(shí)間不超過小時(shí)的學(xué)生所占的百分比是多少?

(3)針對(duì)以上情況,寫出一個(gè)20字以內(nèi)的倡導(dǎo)孝敬父母,熱愛勞動(dòng)的句子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)3×3的方格中填寫了9個(gè)數(shù)字,使得每行、每列、每條對(duì)角線上的三個(gè)數(shù)之和相等,得到的3×3的方格稱為一個(gè)三階幻方.

1)在圖1中空格處填上合適的數(shù)字,使它構(gòu)成一個(gè)三階幻方;

2)如圖2的方格中填寫了一些數(shù)和字母,當(dāng)x+y的值為多少時(shí),它能構(gòu)成一個(gè)三階幻方.

查看答案和解析>>

同步練習(xí)冊(cè)答案