【題目】如圖,,點(diǎn)在上.以點(diǎn)為圓心,為半徑畫(huà)弧,交于點(diǎn)(點(diǎn)與點(diǎn)不重合),連接;再以點(diǎn)為圓心,為半徑畫(huà)弧,交于點(diǎn)(點(diǎn)與點(diǎn)不重合),連接;再以點(diǎn)為圓心,為半徑畫(huà)弧,交于點(diǎn)(點(diǎn)與點(diǎn)不重合),連接;,按照上面的要求一直畫(huà)下去,就會(huì)得到,則
(1)_________;
(2)與線段長(zhǎng)度相等的線段一共有__________條(不含).
【答案】
【解析】
(1)根據(jù)題意首先可以得出,,…,從而進(jìn)一步可得20°,30°,40°,50°,60°,…,最后利用三角形內(nèi)角和定理直接計(jì)算即可;
(2)根據(jù)題意,若按照題中的要求一直畫(huà)下去,可得到點(diǎn),由此可得,從而進(jìn)一步得出的值,然后利用60°、可以得出為等邊三角形,最后進(jìn)一步分析即可.
(1)由題意可知,,,…,
則,,…,
∵10°,
∴20°,30°,40°,50°,60°,…,
∴180°40°40°=100°,
故答案為:100;
(2)根據(jù)題意,若按照題中的要求一直畫(huà)下去,可得到點(diǎn),
∴,解得.
∵為整數(shù),故.
∵60°,,
∴為等邊三角形,
∴與線段長(zhǎng)度相等的線段一共有條(不含),
故答案為:9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展以“我最喜歡的職業(yè)”為主題的調(diào)查活動(dòng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計(jì)圖.
(1)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求出扇形統(tǒng)計(jì)圖中,公務(wù)員部分對(duì)應(yīng)的圓心角的度數(shù);
(3)若從被調(diào)查的學(xué)生中任意抽取一名,求取出的這名學(xué)生最喜歡的職業(yè)是“教師”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)如圖①,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為 ;
(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個(gè)不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說(shuō)明理由;
問(wèn)題解決
(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點(diǎn)D,則對(duì)角線AC的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)y=ax2﹣2ax﹣3a(a>0)圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求點(diǎn)A,B的坐標(biāo);
(2)若M為對(duì)稱軸與x軸交點(diǎn),且DM=2AM.
①求二次函數(shù)解析式;
②當(dāng)t﹣2≤x≤t時(shí),二次函數(shù)有最大值5,求t值;
③若直線x=4與此拋物線交于點(diǎn)E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點(diǎn)),將圖象P沿直線x=4翻折,得到圖象Q,又過(guò)點(diǎn)(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是ts.過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店同時(shí)購(gòu)進(jìn)甲、乙兩種款式的運(yùn)動(dòng)服共套,進(jìn)價(jià)和售價(jià)如表中所示,設(shè)購(gòu)進(jìn)甲款運(yùn)動(dòng)服套(為正整數(shù)),該服裝店售完全部甲、乙兩款運(yùn)動(dòng)服獲得的總利潤(rùn)為元.
運(yùn)動(dòng)服款式 | 甲款 | 乙款 |
進(jìn)價(jià)(元套) | ||
售價(jià)(元套) |
(1)求與的函數(shù)關(guān)系式;
(2)該服裝店計(jì)劃投入萬(wàn)元購(gòu)進(jìn)這兩款運(yùn)動(dòng)服,則至少購(gòu)進(jìn)多少套甲款運(yùn)動(dòng)服?若售完全部的甲、乙兩款運(yùn)動(dòng)服,則服裝店可獲得的最大利潤(rùn)是多少元?
(3)在(2)的條件下,若服裝店購(gòu)進(jìn)甲款運(yùn)動(dòng)服的進(jìn)價(jià)降低元(其中),且最多購(gòu)進(jìn)套甲款運(yùn)動(dòng)服,若服裝店保持這兩款運(yùn)動(dòng)服的售價(jià)不變,請(qǐng)你設(shè)計(jì)出使該服裝店獲得最大銷(xiāo)售利潤(rùn)的購(gòu)進(jìn)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是的外接圓,連結(jié)OA、OB、OC,延長(zhǎng)BO與AC交于點(diǎn)D,與交于點(diǎn)F,延長(zhǎng)BA到點(diǎn)G,使得,連接FG.
備用圖
(1)求證:FG是的切線;
(2)若的半徑為4.
①當(dāng),求AD的長(zhǎng)度;
②當(dāng)是直角三角形時(shí),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B均為格點(diǎn).
(Ⅰ)AB的長(zhǎng)等于_____.
(Ⅱ)若點(diǎn)C是以AB為底邊的等腰直角三角形的頂點(diǎn),點(diǎn)D在邊AC上,且滿足S△ABD=S△ABC.請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出線段BD,并簡(jiǎn)要說(shuō)明點(diǎn)D的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,在正方形外,,過(guò)作于,直線,交于點(diǎn),直線交直線于點(diǎn),則下列結(jié)論正確的是( )
①;②;③;
④若,則
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com