【題目】某校為了解九年級學(xué)生的體育達標(biāo)情況,隨機抽取名九年級學(xué)生進行體育達標(biāo)項目測試,測試成績?nèi)缦卤,請根?jù)表中的信息,解答下列問題:
(1)該校九年級有名學(xué)生,估計體育測試成績?yōu)?/span>分的學(xué)生人數(shù);
(2)該校體育老師要對本次抽測成績?yōu)?/span>分的甲、乙、丙、丁名學(xué)生進行分組強化訓(xùn)練,要求兩人一組,求甲和乙恰好分在同一組的概率.(用列表或樹狀圖方法解答)
【答案】(1)該校九年級有名學(xué)生,估計體育測試成績?yōu)?/span>分的學(xué)生人數(shù)為人;(2).
【解析】
(1)由總?cè)藬?shù)乘以分的學(xué)生所占的比例即可;
(2)畫樹狀圖可知:共有個等可能的結(jié)果,甲和乙恰好分在同一組的結(jié)果有個,由概率公式即可得出結(jié)果.
(1)(人),
答:該校九年級有名學(xué)生,估計體育測試成績?yōu)?/span>分的學(xué)生人數(shù)為人;
(2)畫樹狀圖如圖:
共有個等可能的結(jié)果,甲和乙恰好分在同一組的結(jié)果有個,
甲和乙恰好分在同一組的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標(biāo)準(zhǔn),旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.
(1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.已知:在矩形中,是對角線,于點,于點;
(1)如圖1,求證:;
(2)如圖2,當(dāng)時,連接.,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于矩形面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于兩點,頂點為,對稱軸交軸于點,點為拋物線對稱軸上的一動點(點不與重合).過點作直線的垂線交于點,交軸于點.
求拋物線的解析式;
當(dāng)的面積為時,求點的坐標(biāo);
當(dāng)△PCF為等腰三角形時,請直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據(jù)以往經(jīng)驗:當(dāng)銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.
(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 了解我市市民知曉“禮讓行人”交通新規(guī)的情況,適合全面調(diào)查
B. 甲、乙兩人跳遠成績的方差分別為,,說明乙的跳遠成績比甲穩(wěn)定
C. 一組數(shù)據(jù)2,2,3,4的眾數(shù)是2,中位數(shù)是2.5
D. 可能性是1%的事件在一次試驗中一定不會發(fā)生
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線和直線l:y=kx+b,點A(-3,-3),B(1,-1)均在直線l上.
(1)若拋物線C與直線l有交點,求a的取值范圍;
(2)當(dāng)a=-1,二次函數(shù)的自變量x滿足m≤x≤m+2時,函數(shù)y的最大值為-4,求m的值;
(3)若拋物線C與線段AB有兩個不同的交點,請直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,頂點為A的拋物線與x軸交于B、C兩點,與y軸交于點D,已知A(1,4),B(3,0).
(1)求拋物線對應(yīng)的二次函數(shù)表達式;
(2)探究:如圖1,連接OA,作DE∥OA交BA的延長線于點E,連接OE交AD于點F,M是BE的中點,則OM是否將四邊形OBAD分成面積相等的兩部分?請說明理由;
(3)應(yīng)用:如圖2,P(m,n)是拋物線在第四象限的圖象上的點,且m+n=﹣1,連接PA、PC,在線段PC上確定一點M,使AN平分四邊形ADCP的面積,求點N的坐標(biāo).提示:若點A、B的坐標(biāo)分別為(x1,y1)、(x2,y2),則線段AB的中點坐標(biāo)為(,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC上有一點E,且CE=4AE,點F在DC的延長線上,連接EF,過點E作EG⊥EF,交CB的延長線于點G,連接GF并延長,交AC的延長線于點P,若AB=5,CF=2,則線段EP的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com