【題目】已知如圖1,在以O(shè)為原點(diǎn)的平面直角坐標(biāo)系中,拋物線y= x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣1),連接AC,AO=2CO,直線l過點(diǎn)G(0,t)且平行于x軸,t<﹣1,
(1)求拋物線對(duì)應(yīng)的二次函數(shù)的解析式;
(2)若D為拋物線y= x2+bx+c上一動(dòng)點(diǎn),是否存在直線l使得點(diǎn)D到直線l的距離與OD的長恒相等?若存在,求出此時(shí)t的值;
(3)如圖2,若E、F為上述拋物線上的兩個(gè)動(dòng)點(diǎn),且EF=8,線段EF的中點(diǎn)為M,求點(diǎn)M縱坐標(biāo)的最小值.
【答案】
(1)
解:∵c(0,﹣1),
∴y= x2+bx﹣1,
又∵AO=2OC,
∴點(diǎn)A坐標(biāo)為(﹣2,0),
代入得:1﹣2b﹣1=0,
解得:b=0,
∴解析式為:y= x2﹣1
(2)
解:假設(shè)存在直線l使得點(diǎn)D到直線l的距離與OD的長恒相等,
設(shè)D(a, a2﹣1),
則OD= = = a2+1,
點(diǎn)D到直線l的距離: a2﹣1+|t|,
∴ a2﹣1+|t|= a2+1,
解得:|t|=2,
∵t<﹣1,
∴t=﹣2,
故當(dāng)t=﹣2時(shí),直線l使得點(diǎn)D到直線l的距離與OD的長恒相等
(3)
解:作EN⊥直線l于點(diǎn)N,F(xiàn)H⊥直線l于點(diǎn)H,
設(shè)E(x1,y1),F(xiàn)(x2,y2),
則EN=y1+2,F(xiàn)H=y2+2,
∵M(jìn)為EF中點(diǎn),
∴M縱坐標(biāo)為: = = ﹣2,
由(2)得:EN=OE,F(xiàn)H=OF,
∴ = ﹣2= ﹣2,
要使M縱坐標(biāo)最小,即 ﹣2最小,
當(dāng)EF過點(diǎn)O時(shí),OE+OF最小,最小值為8,
∴M縱坐標(biāo)最小值為 ﹣2= ﹣2=2.
【解析】(1)根據(jù)點(diǎn)C坐標(biāo),可得c=﹣1,然后根據(jù)AO=2CO,可得出點(diǎn)A坐標(biāo),將點(diǎn)A坐標(biāo)代入求出b值,即可得出函數(shù)解析式;(2)假設(shè)存在直線l使得點(diǎn)D到直線l的距離與OD的長恒相等,設(shè)出點(diǎn)D坐標(biāo),分別求出OD和點(diǎn)D到直線l的距離,然后列出等式求出t的值;(3)作EN⊥直線l于點(diǎn)G,F(xiàn)H⊥直線l于點(diǎn)H,設(shè)出點(diǎn)E、F坐標(biāo),表示出點(diǎn)M的縱坐標(biāo),根據(jù)(2)中得出的結(jié)果,代入結(jié)果求出M縱坐標(biāo)的最小值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識(shí),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對(duì)二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為2,E為CD的中點(diǎn),以點(diǎn)A為中心,把△ADE順時(shí)針旋轉(zhuǎn)90°得△ABF,連接EF,則EF的長等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
②畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2;
(2)求△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn), .將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得,連接.
(1)求證: 是等邊三角形;
(2)當(dāng)時(shí),試判斷的形狀,并說明理由;
(3)探究:當(dāng)為多少度時(shí), 是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)居民節(jié)約用電,我市自2012年以來對(duì)家庭用電收費(fèi)實(shí)行階梯電價(jià),即每月對(duì)每戶居民的用電量分為三個(gè)檔級(jí)收費(fèi),第一檔為用電量在180千瓦時(shí)(含180千瓦時(shí))以內(nèi)的部分,執(zhí)行基本價(jià)格;第二檔為用電量在180千瓦時(shí)到450千瓦時(shí)(含450千瓦時(shí))的部分,實(shí)行提高電價(jià);第三檔為用電量超出450千瓦時(shí)的部分,執(zhí)行市場調(diào)節(jié)價(jià)格. 我市一位同學(xué)家今年2月份用電330千瓦時(shí),電費(fèi)為213元,3月份用電240千瓦時(shí),電費(fèi)為150元.已知我市的一位居民今年4、5月份的家庭用電量分別為160和 410千瓦時(shí),請(qǐng)你依據(jù)該同學(xué)家的繳費(fèi)情況,計(jì)算這位居民4、5月份的電費(fèi)分別為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,對(duì)角線AC平分角∠BAD,點(diǎn)P是△ABC內(nèi)一點(diǎn),連接PA、PB、PC,若PA=6,PB=8,PC=10,則菱形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市在城市建設(shè)中,要折除舊煙囪AB(如圖所示),在煙囪正西方向的樓CD的頂端C,測得煙囪的頂端A的仰角為45°,底端B的俯角為30°,已量得DB=21m.
(1)在原圖上畫出點(diǎn)C望點(diǎn)A的仰角和點(diǎn)C望點(diǎn)B的俯角,并分別標(biāo)出仰角和俯角的大小;
(2)拆除時(shí)若讓煙囪向正東倒下,試問:距離煙囪正東35m遠(yuǎn)的一棵大樹是否被歪倒的煙囪砸著?請(qǐng)說明理由.(≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍時(shí),我們稱此三角形為“夢想三角形”.如果一個(gè)“夢想三角形”有一個(gè)角為108°,那么這個(gè)“夢想三角形”的最小內(nèi)角的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程2x2﹣(4k+2)x+2k2+1=0.
(1)當(dāng)k取何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?
(2)當(dāng)k取何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根?
(3)當(dāng)k取何值時(shí),方程沒有實(shí)數(shù)根?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com