【題目】如圖,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.
(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標; 若不存在,請說明理由.
【答案】解:(1)∵拋物線經(jīng)過A(-3,0),B(1,0),
∴可設(shè)拋物線交點式為。
又∵拋物線經(jīng)過C(0,3),∴。
∴拋物線的解析式為:,即。
(2)∵△PBC的周長為:PB+PC+BC,且BC是定值。
∴當PB+PC最小時,△PBC的周長最小。
∵點A、點B關(guān)于對稱軸I對稱,
∴連接AC交l于點P,即點P為所求的點。
∵AP=BP,∴△PBC的周長最小是:PB+PC+BC=AC+BC。
∵A(-3,0),B(1,0),C(0,3),∴AC=3,BC=。
∴△PBC的周長最小是:。
(3)①∵拋物線頂點D的坐標為(﹣1,4),A(﹣3,0),
∴直線AD的解析式為y=2x+6
∵點E的橫坐標為m,∴E(m,2m+6),F(xiàn)(m,)
∴。
∴。
∴S與m的函數(shù)關(guān)系式為。
②,
∴當m=﹣2時,S最大,最大值為1,此時點E的坐標為(﹣2,2)。
【解析】(1)根據(jù)函數(shù)圖象經(jīng)過的三點,用待定系數(shù)法確定二次函數(shù)的解析式即可。
(2)根據(jù)BC是定值,得到當PB+PC最小時,△PBC的周長最小,根據(jù)點的坐標求得相應(yīng)線段的長即可。
(3)設(shè)點E的橫坐標為m,表示出E(m,2m+6),F(xiàn)(m,),最后表示出EF的長,從而表示出S于m的函數(shù)關(guān)系,然后求二次函數(shù)的最值即可。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個判斷:①當x>0時,y>0;②若a=-1,則b=3;③拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點C關(guān)于拋物線對稱軸的對稱點為E,點G、F分別在x軸和y軸上,當m=2時,四邊形EDGF周長的最小值為,其中,判斷正確的序號是( )
A.①②B.②③C.①③D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,學校準備在教學樓后面搭建一個簡易矩形自行車車棚,一邊利用教學樓的后墻(可利用的墻長為19m),另外三邊利用學,F(xiàn)有總長38m的鐵欄圍成.
(1)若圍成的面積為180m,試求出自行車車棚的長和寬;
(2)能圍成的面積為200m自行車車棚嗎?如果能,請你給出設(shè)計方案;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+m分別交x軸,y軸于A,B兩點,已知點C(2,0).
(1)當直線AB經(jīng)過點C時,點O到直線AB的距離是 ;
(2)設(shè)點P為線段OB的中點,連結(jié)PA,PC,若∠CPA=∠ABO,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一副三角板的三個內(nèi)角分別是90°,45°,45°和90°,60°,30°,按如圖所示疊放在一起(點A,D,B在同一直線上),若固定△ABC,將△BDE繞著公共頂點B順時針旋轉(zhuǎn)α度(0<α<180),當邊DE與△ABC的某一邊平行時,相應(yīng)的旋轉(zhuǎn)角α的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)與x軸交于點B和點A(-1,0),與y軸交于點C,與一次函數(shù)交于點A和點D.
1.求出的值;
2.若直線AD上方的拋物線存在點E,可使得△EAD面積最大,求點E的坐標;
3.點F為線段AD上的一個動點,點F到(2)中的點E的距離與到y軸的距離之和記為d,求d的最小值及此時點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點A與原點重合,點B在y軸的正半軸上,點D在x軸的負半軸上,將正方形ABCD繞點A逆時針旋轉(zhuǎn)30°至正方形AB'C′D′的位置,B'C′與CD相交于點M,則點M的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸交于點,若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)若點為x軸上一點,是等腰三角形,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com