如圖,在平面直角坐標(biāo)系xoy中,以點(diǎn)M(1,-1)為圓心,以為半徑作圓,與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),二次函數(shù)的圖象經(jīng)過點(diǎn)A、B、C,頂點(diǎn)為E.
(1)求此二次函數(shù)的表達(dá)式;
(2)設(shè)∠DBC=a,∠CBE=b,求sin(a-b)的值;
(3)坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似.若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(1) ;(2);(3)P1(0,0),P2(0,),P3(9,0).
【解析】
試題分析:(1)由M(1,-1)為圓心,半徑為可求出A(-1,0)、B(3,0)、C(0,-3)、D(0,1),把A、B、C三點(diǎn)代入二次函數(shù)解析式求出a、b、c的值即可;
(2)在Rt△BCE中與Rt△BOD中可求出∠CBE=∠OBD=b,故sin(a-b)=sin(∠DBC-∠OBD)=sin∠OBC=;
(3)存在,Rt△COA∽Rt△BCE,此時點(diǎn)P1(0,0)過A作AP2⊥AC交y正半軸于P2,由Rt△CAP2 ∽Rt△BCE,得P2(0,),過C作CP3⊥AC交x正半軸于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0)故在坐標(biāo)軸上存在三個點(diǎn)P1(0,0),P2(0,),P3(9,0),.
試題解析:(1)∵M(jìn)(1,-1)為圓心,半徑為
∴OA=1,OB=3,OC=3,OD=1,
∴A(-1,0)、B(3,0)、C(0,-3)、D(0,1)
把A(-1,0)、B(3,0)、C(0,-3)代入二次函數(shù)y=ax2+bx+c
解得:a=1,b=-2,c=-3
∴ 二次函數(shù)表達(dá)式為
(2)過點(diǎn)E作EF⊥y軸于點(diǎn)F
∵
∴可得
∵點(diǎn)E為二次函數(shù)的頂點(diǎn)
∴點(diǎn)E的坐標(biāo)為
∴
∵
∴∠OCB=∠ECF=45º
∴∠BCE=90º
∵在Rt△BCE中與Rt△BOD中,
,
∴∠CBE=∠OBD=b,
∴ sin(a-b)=sin(∠DBC-∠OBD)=sin∠OBC=
(3)顯然 Rt△COA∽Rt△BCE,此時點(diǎn)P1(0,0)
過A作AP2⊥AC交y正半軸于P2,由Rt△CAP2 ∽Rt△BCE,得P2(0,)
過C作CP3⊥AC交x正半軸于P3,由Rt△P3CA∽Rt△BCE,得P3(9,0)
故在坐標(biāo)軸上存在三個點(diǎn)P1(0,0),P2(0,),P3(9,0),使得以P、A、C為頂點(diǎn)的三角形與BCE相似
考點(diǎn):1.二次函數(shù)解析式;2.相似三角形的判定與性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com