【題目】在數(shù)﹣4,﹣3,﹣2,﹣1,0,1,2,3,4中是方程x2+x﹣12=0的根有_____.
【答案】3,﹣4.
【解析】
可以將每個(gè)數(shù)分別代入,逐一檢驗(yàn),也可以先解方程,再進(jìn)行判斷.
當(dāng)x=﹣4時(shí),x2+x﹣12=0
當(dāng)x=﹣3時(shí),x2+x﹣12=﹣6≠0
當(dāng)x=﹣2時(shí),x2+x﹣12=﹣10≠0
當(dāng)x=﹣1時(shí),x2+x﹣12=﹣12≠0
當(dāng)x=0時(shí),x2+x﹣12=﹣12≠0
當(dāng)x=1時(shí),x2+x﹣12=﹣10≠0
當(dāng)x=2時(shí),x2+x﹣12=﹣6≠0
當(dāng)x=3時(shí),x2+x﹣12=0
當(dāng)x=4時(shí),x2+x﹣12=8≠0
故是方程x2+x﹣12=0的根有﹣4,3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的是( )
A.∠A=∠C,∠B=∠D
B.AB∥CD,AB=CD
C.AB=CD,AD∥BC
D.AB∥CD,AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三條線段之比是:(1)2:2:3;(2)2:3:5;(3)1:4:6;(4)3:4:5,其中能構(gòu)成三角形的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,點(diǎn)M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,則∠B=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠A和∠B是同旁內(nèi)角,且∠A=60°,則∠B的度數(shù)是( 。
A.60°
B.120°
C.60°或120°
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)完一元一次方程解法,數(shù)學(xué)老師出了一道解方程題目:
.李銘同學(xué)的解題步驟如下:
解:去分母,得3(x+1)-2(2-3x)=1;……①
去括號,得3x+3-4-6x=1; ……②
移項(xiàng),得3x-6x=1-3+4; ……③
合并同類項(xiàng),得-3x=2; ……④
系數(shù)化為1,得x=-. ……⑤
(1)聰明的你知道李銘的解答過程在第_________(填序號)出現(xiàn)了錯(cuò)誤,出現(xiàn)上面錯(cuò)誤的原因是違背了____.(填序號)①去括號法則;②等式的性質(zhì)1;③等式的性質(zhì)2;④加法交換律.
(2)請你寫出正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L: 與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C(0,4),動(dòng)點(diǎn)M從A點(diǎn)以每秒1個(gè)單位的速度沿x軸向左移動(dòng).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△COM的面積S與M的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí)△COM≌△AOB,并求此時(shí)M點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com