【題目】如圖,在中,,,是的平分線,,垂足是,和的延長線交于點(diǎn).
(1)在圖中找出與全等的三角形,并說出全等的理由;
(2)說明;
(3)如果,直接寫出的長為 .
【答案】(1)見解析;(2)見解析;(3)5﹣5.
【解析】
(1)由∠ABD+∠ADB=90°,∠EDC+∠DCE=90°,∠ADB=∠EDC,锝∠ABD=∠ACF, 根據(jù)ASA即可證明△ABD≌△ACF,
(2)由△ABD≌△ACF,得BD=CF,根據(jù)ASA證明△FBE≌△CBE,得EF=EC,進(jìn)而得到結(jié)論;
(3)過點(diǎn)D作DM⊥BC于點(diǎn)M,由BD是∠ABC的平分線,得AD=DM,由∠ACB=45°,得CD==,進(jìn)而即可得到答案.
(1)△ABD≌△ACF,理由如下:
∵∠BAC=90°,BD⊥CE,
∴∠ABD+∠ADB=90°,∠EDC+∠DCE=90°,
∵∠ADB=∠EDC,
∴∠ABD=∠ACF,
在△ABD和△ACF中,
,
∴△ABD≌△ACF(ASA);
(2)∵△ABD≌△ACF,
∴BD=CF,
∵BD是∠ABC的平分線,
∴∠FBE=∠CBE,
在△FBE和△CBE中,
,
∴△FBE≌△CBE(ASA),
∴EF=EC,
∴CF=2CE,
∴BD=2CE;
(3)過點(diǎn)D作DM⊥BC于點(diǎn)M,
∵BD是∠ABC的平分線,,
∴AD=DM,
∵=5,
∴∠ACB=45°,
∴CD==,
∴AD+CD=AD+=AC=5,
∴AD== 5﹣5.
故答案是:5﹣5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點(diǎn)P在AD上,AB=3,AP=1,將三角板的直角頂點(diǎn)放在點(diǎn)P處,三角板的兩直角邊分別能與AB、BC邊相交于點(diǎn)E、F,連接EF.
(1)如圖,當(dāng)點(diǎn)E與點(diǎn)B重合時,點(diǎn)F恰好與點(diǎn)C重合,求此時PC的長;
(2)將三角板從(1)中的位置開始,繞點(diǎn)P順時針旋轉(zhuǎn),當(dāng)點(diǎn)E與點(diǎn)A重合時停止,在這個過程中,請你觀察、探究并解答:在這個過程中,設(shè)CF=m.試解答:①用含m的代數(shù)式表示四邊形BEPF的面積,并直接寫出m的取值范圍;②從開始到停止,求線段EF的中點(diǎn)所經(jīng)過的路線長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一,下列圖表中的數(shù)據(jù)是運(yùn)動員甲、乙、丙三人每人10次墊球測試的成績,測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分,已知運(yùn)動員甲測試成績的中位數(shù)和眾數(shù)都是7.
運(yùn)動員甲測試成績統(tǒng)計(jì)表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 6 | 8 | 6 | 8 |
(1)填空:______;______.
(2)要從他們?nèi)酥羞x擇一位墊球較為穩(wěn)定的接球能手,你認(rèn)為選誰更合適?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鼎豐超市以固定進(jìn)價一次性購進(jìn)保溫杯若干個,11月份按一定售價銷售,銷售額為1800元,為擴(kuò)大銷量,減少庫存,12月份在11月份售價基礎(chǔ)上打9折銷售,結(jié)果銷售量增加50個,銷售額增加630元.
(1)求鼎豐超市11月份這種保溫杯的售價是多少元?
(2)如果鼎豐超市11月份銷售這種保溫杯的利潤為600元,那么該鼎豐超市12月份銷售這種保溫杯的利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC內(nèi)接于⊙O,AF是⊙O的弦,AF⊥BC,垂足為D,點(diǎn)E為弧BF上一點(diǎn),且BE=CF,
(1)求證:AE是⊙O的直徑;
(2)若∠ABC=∠EAC,AE=8,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是.
(1)請?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出關(guān)于軸對稱的;
(3)請?jiān)?/span>軸上求作一點(diǎn),使的周長最小,并寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,為的中點(diǎn),、分別是、(或它們的延長線)上的動點(diǎn),且.
(1)當(dāng)時,如圖①,線段和線段的關(guān)系是:_________________;
(2)當(dāng)與不垂直時,如圖②,(1)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)當(dāng)、運(yùn)動到、的延長線時,如圖③,請直接寫出、、之間的關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com