【題目】在數(shù)學(xué)課外小組活動(dòng)中,老師提出了如下問題:
如果一個(gè)不等式中含有絕對值,并且絕對值符號中含有未知數(shù),我們把這個(gè)不等式叫做絕對值不等式,求絕對值不等式|x|>a(a>0)和|x|<a(a>0)的解集.
小明同學(xué)的探究過程如下:
先從特殊情況入手,求|x|>2和|x|<2的解集.確定|x|>2的解集過程如下:
先根據(jù)絕對值的幾何定義,在數(shù)軸上找到到原點(diǎn)的距離大于2的所有點(diǎn)所表示的數(shù),在數(shù)軸上確定范圍如下:
所以,|x|>2的解集是x>2或 .
再來確定|x|<2的解集:同樣根據(jù)絕對值的幾何定義,在數(shù)軸上找到到原點(diǎn)的距離小于2的所有點(diǎn)所表示的數(shù),在數(shù)軸上確定范圍如下:
所以,|x|<2的解集為: .
經(jīng)過大量特殊實(shí)例的實(shí)驗(yàn),小明得到絕對值不等式|x|>a(a>0)的解集為 ,|x|<a(a>0)的解集為 .
請你根據(jù)小明的探究過程及得出的結(jié)論,解決下列問題:
(1)請將小明的探究過程補(bǔ)充完整;
(2)求絕對值不等式2|x+1|-3<5的解集.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為2的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長線上一點(diǎn),當(dāng)PA=CQ時(shí),連接PQ交AC邊于D,則DE的長為( 。
A.B.1C.D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】杭州休博會期間,嘉年華游樂場投資150萬元引進(jìn)一項(xiàng)大型游樂設(shè)施.若不計(jì)維修保養(yǎng)費(fèi)用,預(yù)計(jì)開放后每月可創(chuàng)收33萬元.而該游樂設(shè)施開放后,從第1個(gè)月到第x個(gè)月的維修保養(yǎng)費(fèi)用累計(jì)為y(萬元),且y=ax2+bx;若將創(chuàng)收扣除投資和維修保養(yǎng)費(fèi)用稱為游樂場的純收益g(萬元),g也是關(guān)于x的二次函數(shù);
(1)若維修保養(yǎng)費(fèi)用第1個(gè)月為2萬元,第2個(gè)月為4萬元.求y關(guān)于x的解析式;
(2)求純收益g關(guān)于x的解析式;
(3)問設(shè)施開放幾個(gè)月后,游樂場的純收益達(dá)到最大;幾個(gè)月后,能收回投資?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在探究平行線的判定——基本事實(shí):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行時(shí),老師布置了這樣的任務(wù):
請同學(xué)們分組在學(xué)案上(如圖),用直尺和三角尺畫出過點(diǎn)P與直線AB平行的直線PQ;并思考直尺和三角尺在畫圖過程中所起的作用.
小菲和小明所在的小組是這樣做的:他們選取直尺和含有45°角的三角尺,用平移三角尺的畫圖方法畫出AB的平行線PQ,并將實(shí)際畫圖過程抽象出平面幾何圖形(如圖).
以下是小菲和小明所在小組關(guān)于直尺和三角尺作用的討論:
①在畫平行線的過程中,三角尺由初始位置靠著直尺平移到終止位置,實(shí)際上就是先畫∠BMD=45°,再過點(diǎn)P畫∠BMD=45°
②由初始位置的三角尺和終止位置的三角尺各邊所在直線構(gòu)成一個(gè)“三線八角圖”,其中QP為截線
③初始位置的三角尺和終止位置的三角尺在“三線八角圖”中構(gòu)成一組同位角
④在畫圖過程中,直尺可以由直線CD代替
⑤在“三線八角圖”中,因?yàn)?/span>AB和CD是截線,所以,可以下結(jié)論“兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行”
其中,正確的是( )
A.①②⑤B.①③④C.②④⑤D.③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)水槽有進(jìn)水管和出水管各一個(gè),進(jìn)水管每分鐘進(jìn)水a升,出水管每分鐘出水b升.水槽在開始5分鐘內(nèi)只進(jìn)水不出水,隨后15分鐘內(nèi)既進(jìn)水又出水,得到時(shí)間x(分)與水槽內(nèi)的水量y(升)之間的函數(shù)關(guān)系(如圖所示).
(1)求a、b的值;
(2)如果在20分鐘之后只出水不進(jìn)水,求這段時(shí)間內(nèi)y關(guān)于x的函數(shù)解析式及定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+3與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,且C點(diǎn)的坐標(biāo)為(1,0).
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)D(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PB+PD最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)長方形窗框被分成上下兩個(gè)長方形,上部分長方形又被分成三個(gè)小長方形,其中,為的四等分點(diǎn)(在左側(cè))且.一晾衣桿斜靠在窗框上的位置,為中點(diǎn).若,分長方形的左右面積之比為,則分長方形的左右面積之比為________.(用含,的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)D在邊BC上,DE⊥AB于E,DH⊥AC于H,且滿足DE=DH,F為AE的中點(diǎn),G為直線AC上一動(dòng)點(diǎn),滿足DG=DF,若AE=4cm,則AG= _____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=6,CD=8,E,F分別是邊ABCD的中點(diǎn), DH⊥BC于點(diǎn)H,連接EH,EC,EF,現(xiàn)有下列結(jié)論:①∠CDH=30°;②EF=4;③四邊形EFCH是菱形;④S△EFC=3S△BEH.你認(rèn)為結(jié)論正確的有___________.(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com