(2002•徐州)2001年亞洲鐵人三項(xiàng)賽在徐州市風(fēng)光秀麗的云龍湖畔舉行.比賽程序是:運(yùn)動(dòng)員先同時(shí)下水游泳1.5千米到第一換項(xiàng)點(diǎn),在第一換項(xiàng)點(diǎn)整理服裝后,接著騎自行車行40千米到第二換項(xiàng)點(diǎn),再跑步10千米到終點(diǎn).下表是2001年亞洲鐵人三項(xiàng)賽女子組(19歲以下)三名運(yùn)動(dòng)員在比賽中的成績(jī)(游泳成績(jī)即游泳所用時(shí)間,其它類推,表內(nèi)時(shí)間單位為秒)

(1)填空(精確到0.01):
第191號(hào)運(yùn)動(dòng)員騎自行車的平均速度是
8.12
8.12
米/秒;
第194號(hào)運(yùn)動(dòng)員騎自行車的平均速度是
7.03
7.03
米/秒;
第195號(hào)運(yùn)動(dòng)員騎自行車的平均速度是
7.48
7.48
米/秒;
(2)如果運(yùn)動(dòng)員騎自行車都是勻速的,那么在騎自行車的途中,191號(hào)運(yùn)動(dòng)員會(huì)追上195號(hào)或194號(hào)嗎?如果會(huì),那么追上時(shí)離第一換項(xiàng)點(diǎn)有多少米(精確到0.01)?如果不會(huì),為什么?
(3)如果長(zhǎng)跑也都是勻速的,那么在長(zhǎng)跑途中這三名運(yùn)動(dòng)員中有可能某人追上某人嗎?為什么?
分析:(1)用路程÷時(shí)間=速度求解即可;
(2)設(shè)191號(hào)出發(fā)x秒后追上194號(hào),則有8.12x=(x+459)×7.03,可得出191號(hào)能追上194號(hào),又因?yàn)榈竭_(dá)第二項(xiàng)點(diǎn)時(shí)191號(hào)所用的總時(shí)間是6 999秒,而195號(hào)所用總時(shí)間是6.779秒,所以195號(hào)先到達(dá)第二換項(xiàng)點(diǎn),則191號(hào)不會(huì)追上195號(hào);
(3)觀察圖表,可得知從第二換項(xiàng)點(diǎn)出發(fā)時(shí),195號(hào)比191號(hào)快,且長(zhǎng)跑速度比191號(hào)塊,所以195號(hào)在長(zhǎng)跑時(shí)始終在191號(hào)前面;而191在第二換項(xiàng)點(diǎn)所用時(shí)間比194號(hào)少,長(zhǎng)跑速度又比194號(hào)快,所以191號(hào)在長(zhǎng)跑時(shí)始終在194號(hào)前面,它們誰也追不上誰.
解答:解:(1)∵40千米=40000米,
∴第191號(hào)運(yùn)動(dòng)員騎自行車的平均速度:40000÷4927≈8.12米/秒,
第194號(hào)運(yùn)動(dòng)員騎自行車的平均速度:40000÷5686≈7.03米/秒,
第195號(hào)運(yùn)動(dòng)員騎自行車的平均速度:40000÷5351≈7.48米/秒;
(2)從第一項(xiàng)點(diǎn)出發(fā)時(shí),194號(hào)晚459′,設(shè)191號(hào)出發(fā)x秒后追上194號(hào),
∴8.12x=(x+459)×7.03,
∴x≈2960.34(秒),
∴8.12×2960.34≈24037.96(米),
∴191號(hào)能追上194號(hào),這時(shí)離第一換項(xiàng)點(diǎn)有24 037.96米,
∵到達(dá)第二項(xiàng)點(diǎn)時(shí)191號(hào)所用的總時(shí)間是6 999秒,而195號(hào)所用總時(shí)間是6.779秒,
∴195號(hào)先到達(dá)第二換項(xiàng)點(diǎn),在自行車途中191號(hào)不會(huì)追上195號(hào);
(3)從第二換項(xiàng)點(diǎn)出發(fā)時(shí),195號(hào)比191號(hào)提前216秒,且長(zhǎng)跑速度比191號(hào)塊,所以195號(hào)在長(zhǎng)跑時(shí)始終在191號(hào)前面;而191號(hào)在騎自行車時(shí)已追上194號(hào),且在第二換項(xiàng)點(diǎn)所用時(shí)間比194號(hào)少,長(zhǎng)跑速度又比194號(hào)快,所以191號(hào)在長(zhǎng)跑時(shí)始終在194號(hào)前面,故在長(zhǎng)跑時(shí),誰也追不上誰.
點(diǎn)評(píng):本題是平均數(shù)的綜合運(yùn)用.考查學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)的能力,解題的關(guān)鍵是看清圖表中數(shù)字代表的意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2002•徐州)(2ab23-(9ab2)•(-ab22=
-a3b6
-a3b6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•徐州)已知:如圖,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E為AB中點(diǎn),求證:四邊形BCDE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•徐州)已知二次函數(shù)y=x2-(2m+1)x+m2的圖象與x軸交于點(diǎn)A(xl,0)、B(x2,0),其中xl<x2,且+=
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)y=x+n的圖象過點(diǎn)B,求其解析式;
(3)在給出的坐標(biāo)系中畫出所求出的一次函數(shù)和二次函數(shù)的圖象;
(4)對(duì)任意實(shí)數(shù)a、b,若a≥b,記max{a,b}=a,例如:max{1,2}=2,max{3,3}=3,請(qǐng)你觀察第(3)題中的兩個(gè)圖象,如果對(duì)于任意一個(gè)實(shí)數(shù)x,它對(duì)應(yīng)的一次函數(shù)的值為y1,對(duì)應(yīng)的二次函數(shù)的值為y2,求出max{y1,y2}中的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省徐州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•徐州)已知二次函數(shù)y=x2-(2m+1)x+m2的圖象與x軸交于點(diǎn)A(xl,0)、B(x2,0),其中xl<x2,且+=
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)y=x+n的圖象過點(diǎn)B,求其解析式;
(3)在給出的坐標(biāo)系中畫出所求出的一次函數(shù)和二次函數(shù)的圖象;
(4)對(duì)任意實(shí)數(shù)a、b,若a≥b,記max{a,b}=a,例如:max{1,2}=2,max{3,3}=3,請(qǐng)你觀察第(3)題中的兩個(gè)圖象,如果對(duì)于任意一個(gè)實(shí)數(shù)x,它對(duì)應(yīng)的一次函數(shù)的值為y1,對(duì)應(yīng)的二次函數(shù)的值為y2,求出max{y1,y2}中的最小值及取得最小值時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案