已知拋物線y=ax2+bx+c(a<0)過A(-2,0)、O(0,0)、B(-3,y1)、C(3,y2)四點,則y1與y2的大小關(guān)系是   
【答案】分析:由已知可得拋物線與x軸交于A(-2,0)、O(0,0)兩點,開口向下,對稱軸為x==-1,可知B、C兩點在對稱軸的兩邊,點B離對稱軸較近,再根據(jù)拋物線圖象進行判斷.
解答:解:∵拋物線與x軸交于A(-2,0)、O(0,0)兩點,
∴拋物線對稱軸為x==-1,
∵B(-3,y1)、C(3,y2),點B離對稱軸較近,且拋物線開口向下,
∴y1>y2
故本題答案為y1>y2
點評:本題考查了二次函數(shù)的增減性.當(dāng)二次項系數(shù)a>0時,在對稱軸的左邊,y隨x的增大而減小,在對稱軸的右邊,y隨x的增大而增大;a<0時,在對稱軸的左邊,y隨x的增大而增大,在對稱軸的右邊,y隨x的增大而減。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當(dāng)x≥1時y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案