【題目】已知x=﹣mxm2時(shí),多項(xiàng)式ax2+bx+4a+1的值都相等,且m1,若當(dāng)1x2時(shí),存在x的值,使多項(xiàng)式ax2+bx+4a+1的值為3,則a的取值范圍是_____

【答案】

【解析】

利用x=-mx=m-2時(shí),ax2+bx+4a+1的值相等求出a、b的關(guān)系.在1x2范圍內(nèi)ax2+bx+4a+1的值在為3可等價(jià)于函數(shù)y=ax2+2ax+4a-2x軸交點(diǎn)在1x2范圍內(nèi),利用二次函數(shù)圖象與性質(zhì)看出x=1x=2時(shí),對應(yīng)函數(shù)值的正負(fù)性,進(jìn)而列出不等式求a的范圍.

x=﹣mxm2時(shí),ax2+bx+4a+1的值相等

a(﹣m2+b(﹣m)+4a+1am22+bm2)+4a+1

整理得:(4a2b)(m1)=0

m1

4a2b0,即b2a

∵當(dāng)1x2時(shí),存在x使得ax2+bx+4a+13

a0

整理得:ax2+2ax+4a20

yax2+2ax+4a2ax+12+3a2

即拋物線yax+12+3a2x軸的交點(diǎn)在1x2的范圍內(nèi)

①當(dāng)a0,如圖1,在對稱軸直線x=﹣1右側(cè)yx增大而增大

x1時(shí),ya+2a+4a20,解得:a

x2時(shí),y4a+4a+4a20,解得:a

a

②當(dāng)a0,如圖2,在對稱軸直線x=﹣1右側(cè)yx增大而減小

x1時(shí),ya+2a+4a20,解得:a

x2時(shí),y4a+4a+4a20,解得:a

∴不等式組無解

故答案為:a

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給定關(guān)于x的二次函數(shù)ykx24kx+3k0),

1)當(dāng)該二次函數(shù)與x軸只有一個(gè)公共點(diǎn)時(shí),求k的值;

2)當(dāng)該二次函數(shù)與x軸有2個(gè)公共點(diǎn)時(shí),設(shè)這兩個(gè)公共點(diǎn)為A、B,已知AB2,求k的值;

3)由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會(huì)變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時(shí)得出以下結(jié)論:

y軸的交點(diǎn)不變;對稱軸不變;一定經(jīng)過兩個(gè)定點(diǎn);

請判斷以上結(jié)論是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016廣東省深圳市)荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費(fèi)90元;后又購買了1千克桂味和2千克糯米糍,共花費(fèi)55元.(每次兩種荔枝的售價(jià)都不變)

(1)求桂味和糯米糍的售價(jià)分別是每千克多少元;

(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請?jiān)O(shè)計(jì)一種購買方案,使所需總費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰直角三角形,ABAC,D為平面內(nèi)的任意一點(diǎn),且滿足CDAC,若△ADB是以AD為腰的等腰三角形,則∠CDB的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:經(jīng)過三角形一邊中點(diǎn),且平分三角形周長的直線叫做這個(gè)三角形在該邊上的中分線,其中落在三角形內(nèi)部的部分叫做中分線段.

1)如圖,△ABC中,ACAB,DE是△ABCBC邊上的中分線段,FAC中點(diǎn),過點(diǎn)BDE的垂線交AC于點(diǎn)G,垂足為H,設(shè)ACbABc

求證:DFEF;

b6,c4,求CG的長度;

2)若題(1)中,SBDHSEGH,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形AOBC中,OB4,OA3,分別以OBOA所在直線為x軸,y軸,建立如圖所示的平面直角坐標(biāo)系,FBC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過點(diǎn)F的反比例函數(shù)k0)的圖象與邊AC交于點(diǎn)E

1)當(dāng)點(diǎn)F為邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);(2)連接EF,求∠EFC的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校開展書香校園活動(dòng)以來,受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計(jì)表.學(xué)生借閱圖書的次數(shù)統(tǒng)計(jì)表

借閱圖書的次數(shù)

0

1

2

3

4次及以上

人數(shù)

7

13

a

10

3

請你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

______,______.

該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是______,眾數(shù)是______.

請計(jì)算扇形統(tǒng)計(jì)圖中“3所對應(yīng)扇形的圓心角的度數(shù);

若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書“4次及以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象與x軸交于點(diǎn)A(﹣1,0),與y軸交于點(diǎn)B.且對稱軸為x=1.則下面的四個(gè)結(jié)論:

①當(dāng)x>﹣1時(shí),y>0;

②一元二次方程ax2+bx+c=0的兩根為x1=﹣1,x2=3;

③當(dāng)y<0時(shí),x<﹣1;

④拋物線上兩點(diǎn)(x1,y1),(x2,y2).當(dāng)x1>x2>2時(shí),y1>y2

其中正確結(jié)論的個(gè)數(shù)是( 。

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了豐富同學(xué)們的課外活動(dòng)生活,開設(shè)了“第二課堂”.課堂設(shè)置了十幾個(gè)動(dòng)項(xiàng)目,根據(jù)(1)班學(xué)生報(bào)名參加的項(xiàng)目,繪制成如下的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

結(jié)合圖中信息,回答下列問題

1)這個(gè)班學(xué)生人數(shù)有   人;

2)補(bǔ)全條形統(tǒng)計(jì)圖,在扇形統(tǒng)計(jì)圖中其它項(xiàng)目所對的圓心角為   ;

3)喜歡羽毛球的有3名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)參加學(xué)校的羽毛球隊(duì),用列表或樹狀圖求出所抽取的2名同學(xué),恰好2人都是男同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊答案