【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D.
(1)在圖(1)中,用直尺和圓規(guī)過點(diǎn)D作⊙O的切線DE交BC于點(diǎn)E;(保留作圖痕跡,不寫作法)
(2)如圖(2),如果⊙O的半徑為3,ED=4,延長EO交⊙O于F,連接DF,與OA交于點(diǎn)G,求OG的長.
【答案】(1)見解析;(2)OG=.
【解析】
(1)連接OD,作∠COD的平分線交BC于點(diǎn)E,連接DE,DE就是⊙O的切線;
(2)連接OD,CD.CD與FF交于點(diǎn)H,根據(jù)切線長定理可得OE⊥CD, 然后利用勾股定理可得AD= .由題意易得OE∥AB,于是易證△OFG∽△ADG,根據(jù)相似三角形對應(yīng)線段成比例,即可求出OG的長.
(1)切線DE如圖所示;
(2)連接CD,OD;
由題意EC、ED是⊙O的切線,
∴EC=ED,∵OC=OD,
∴OE⊥CD,
∵AC是直徑,
∴∠CDA=90°,
∴CD⊥AB,
∴OE∥AB,
∴,
在Rt△ECO中,EO= =5,
∵∠EOC=∠CAD,
∴cos∠CAD=cos∠EOC= = ,
∴AD= ,設(shè)OG=x,
則有,
∴x= ,
∴OG=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點(diǎn) D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點(diǎn)P是AE上一個動點(diǎn),則PF+PB的最小值為___________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是BC的中點(diǎn),點(diǎn)P為對角線BD上的動點(diǎn),設(shè)BP=t(t>0),作PH⊥BC于點(diǎn)H,連接EP并延長至點(diǎn)F,使得PF=PE,作點(diǎn)F關(guān)于BD的對稱點(diǎn)G,FG交BD于點(diǎn)Q,連接GH,GE.
(1)求證:EG∥PQ;
(2)當(dāng)點(diǎn)P運(yùn)動到對角線BD中點(diǎn)時,求△EFG的周長;
(3)在點(diǎn)P的運(yùn)動過程中,△GEH是否可以為等腰三角形?若可以,求出t的值;若不可以,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD,AB=4,BC=6,點(diǎn)M為矩形內(nèi)一點(diǎn),點(diǎn)E為BC邊上任意一點(diǎn),則MA+MD+ME的最小值為( )
A. 3+2B. 4+3C. 2+2D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB=CD,M、N、P分別是AD、BC、BD的中點(diǎn)∠ABD=20°,∠BDC=70°,則∠NMP的度數(shù)為( 。
A. 50° B. 25° C. 15° D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點(diǎn)為x軸上一點(diǎn),是等腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,∠A=60°,以點(diǎn)B為圓心的圓與AD、DC相切,與AB、CB的延長線分別相交于點(diǎn)E,F(xiàn),則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣4與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸的另一個交點(diǎn)為C,連接BC.
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)M在拋物線上,連接MB,當(dāng)∠MBA+∠CBO=45°時,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P從點(diǎn)C出發(fā),沿線段CA由C向A運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC由B向C運(yùn)動,P、Q的運(yùn)動速度都是每秒1個單位長度,當(dāng)Q點(diǎn)到達(dá)C點(diǎn)時,P、Q同時停止運(yùn)動,試問在坐標(biāo)平面內(nèi)是否存在點(diǎn)D,使P、Q運(yùn)動過程中的某一時刻,以C、D、P、Q為頂點(diǎn)的四邊形為菱形?若存在,直接寫出點(diǎn)D的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com