【題目】如圖,∠BAC=90°,AD⊥BC,垂足為點(diǎn) D.下列說法中:①∠B的余角只有∠BAD;②∠B=∠C;③線段 AB 的長度表示點(diǎn) B 到直線 AC 的距離;④AB·AC=BC·AD;一定正確的有( )

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

【答案】A

【解析】

根據(jù)互為余角的定義,點(diǎn)的線的距離就是點(diǎn)到線的垂線段的長度及相似三角形的判定解答即可.

B的余角有∠BAD和∠C, ①錯(cuò)誤; ∵∠BAC=90°, ∴∠B+C=90°, ②錯(cuò)誤; 點(diǎn) B 到直線 AC 的距離是線段BA的長度, ③錯(cuò)誤; ∵∠B+C=90°, C+CAD=90°, ∴∠B=CAD, ∵∠BAC=ADC=90°, ∴△ABC∽△DAC, , AB·AC=BC·AD,④正確.故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了預(yù)測本校應(yīng)屆畢業(yè)女生“一分鐘跳繩”項(xiàng)目考試情況,從九年級隨機(jī)抽取部分女生進(jìn)行該項(xiàng)目測試,并以測試數(shù)據(jù)為樣本,繪制出如圖所示的部分頻數(shù)分布直方圖(從左到右依次分為六個(gè)小組,每小組含最小值,不含最大值)和扇形統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問題:

(1)補(bǔ)全頻數(shù)分布直方圖 , 并指出這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第小組;(1)
(2)若測試九年級女生“一分鐘跳繩”次數(shù)不低于130次的成績?yōu)閮?yōu)秀,本校九年級女生共有260人,請估計(jì)該校九年級女生“一分鐘跳繩”成績?yōu)閮?yōu)秀的人數(shù);
(3)如測試九年級女生“一分鐘跳繩”次數(shù)不低于170次的成績?yōu)闈M分,在這個(gè)樣本中,從成績?yōu)閮?yōu)秀的女生中任選一人,她的成績?yōu)闈M分的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BAD,AD=AC,在AC上截取AE=AB,連接DE、BE,并延長BECD于點(diǎn) F,以下結(jié)論:①△BAC≌△EAD;②∠ABE+ADE=BCD;③BC+CF=DE+EF;其中正確的有( )個(gè)

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) 的圖象如圖所示,有下列4個(gè)結(jié)論,其中正確的結(jié)論是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=2,BC=,且∠BAC=120°,點(diǎn)D是線段BC上的一動點(diǎn)(不與點(diǎn)B、C重合),連接AD,作∠ADE=30°,DEAC于點(diǎn)E

1)求證:∠BADEDC;

2)當(dāng)BD= 時(shí),△ABD≌△EDC,并說明理由.

3)當(dāng)△ADE是直角三角形時(shí),求AD的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過點(diǎn)D。

(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,點(diǎn)MCD中點(diǎn),將MBC沿BM翻折至MBE,若AME α,∠ABE β,則 α β 之間的數(shù)量關(guān)系為( )

A. α+3β=180° B. β-α=20° C. α+β=80° D. 3β-2α=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=kx+k,與y= 在同一坐標(biāo)系中的圖象大致如圖,則( )

A.K﹥0
B.K﹤0
C.-1﹤K﹤0
D.K﹤-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,A、B、C為⊙O上的三個(gè)點(diǎn),⊙O的直徑為4cm,∠ACB=45°,求AB的長

查看答案和解析>>

同步練習(xí)冊答案