如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”證明△ABC≌△ABD,則需要加條件         _______          ; 若利用“HL”證明△ABC≌△ABD,則需要加條件                    

 

【答案】

∠CAB、∠DAB或∠CBA、∠DBA,BD、BC或AD、AC.

【解析】

試題分析:要判定△ABC≌△ABD,已知∠C=∠D=90°,AB=AB,具備了一組邊、一組角相等,故添加∠CAB=∠DAB或∠CBA=∠DBA,BD=BC或AD=AC后可分別根據(jù)AAS、HL判定三角形全等.

添加∠CAB=∠DAB或∠CBA=∠DBA,BD=BC或AD=AC.

∵∠C=∠D,∠CAB=∠DAB(∠CBA=∠DBA),AB=AB

∴△ABC≌△ABD(AAS);

∵∠C=∠D=90°,AB=AB(AD=AC),BD=BC

∴△ABC≌△ABD(HL).

考點(diǎn):全等三角形的判定方法

點(diǎn)評(píng):全等三角形的性質(zhì)的應(yīng)用是初中數(shù)學(xué)平面圖形中極為重要的知識(shí),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),因而是中考的熱點(diǎn),在各種題型中均有出現(xiàn),一般難度不大,需特別注意.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知,如圖,在△ABC和△EDB中,∠ACB=∠EBD=90°,點(diǎn)E在BC上,DE⊥AB交AB于F,且AB=ED.求證:DB=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△DEF中,AC∥DE,∠EFD與∠B互補(bǔ),DE=mAC(m>1).試探索線段EF與AB的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”證明△ABC≌△ABD,則需要加條件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”證明△ABC≌△ABD,則需要加條件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB邊上的中點(diǎn).則DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,請(qǐng)說(shuō)明AE=BD的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案