如圖,在菱形ABCD中,AE⊥BC于E,已知EC=1,cosB=,則這個(gè)菱形的面積是   
【答案】分析:解直角三角形ABE,求出AB、AE后計(jì)算.
解答:解:設(shè)菱形的邊長(zhǎng)為x,
則BE的長(zhǎng)為x-1.
∵cosB=,
==,
可得:x=
∴BE=,
∵AB2=BE2+AE2,即=+AE2,
∴AE=
故:S菱形=BC×AE=×=
點(diǎn)評(píng):本題主要是根據(jù)三角函數(shù)和菱形的特殊性質(zhì)可求出菱形的邊及高,代入菱形的面積即可求出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長(zhǎng)為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點(diǎn),P為對(duì)角線BD上任意一點(diǎn),AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時(shí),四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點(diǎn)E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案