【題目】直接想出不等式的解集:

(1)x+3>6的解集 ;(2)2x<12的解集 ;

(3)x-5>0的解集 ;(4)0.5x>5的解集 .

【答案】(1)x>3;(2)x<6;(3)x>5;(4)x>10

【解析】

試題分析:根據(jù)不等式的基本性質(zhì)即可得到結(jié)果.

(1)x+3>6的解集為x>3;(2)2x<12的解集為x<6;

(3)x-5>0的解集為x>5;(4)0.5x>5的解集為x>10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式: ,并將解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=x2+2x+mx軸有兩個(gè)不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AOB=45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP=2cm.將O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C處.

(1)當(dāng)PCQB時(shí),OQ ;

當(dāng)PCQB時(shí),求OQ的長(zhǎng).

(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為減少環(huán)境污染,自2008年6月1日起,全國(guó)的商品零售場(chǎng)所開(kāi)始實(shí)行“塑料購(gòu)物袋有償使用制度”(以下簡(jiǎn)稱(chēng)“限塑令”).某班同學(xué)于6月上旬的一天,在某超市門(mén)口采用問(wèn)卷調(diào)查的方式,隨機(jī)調(diào)查了“限塑令”實(shí)施前后,顧客在該超市用購(gòu)物袋的情況,以下是根據(jù)100位顧客的100份有效答卷畫(huà)出的統(tǒng)計(jì)圖表的一部分:

“限塑令”實(shí)施后,塑料購(gòu)物袋使用后的處理方式統(tǒng)計(jì)表

處理方式

直接丟棄

直接做垃圾袋

再次購(gòu)物使用

其它

選該項(xiàng)的人數(shù)占

總?cè)藬?shù)的百分比

5%

35%

49%

11%

請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:

(1)補(bǔ)全圖1,“限塑令”實(shí)施前,如果每天約有2 000人次到該超市購(gòu)物.根據(jù)這100位顧客平均一次購(gòu)物使用塑料購(gòu)物袋的平均數(shù),估計(jì)這個(gè)超市每天需要為顧客提供多少個(gè)塑料購(gòu)物袋?

(2)補(bǔ)全圖2,并根據(jù)統(tǒng)計(jì)圖和統(tǒng)計(jì)表說(shuō)明,購(gòu)物時(shí)怎樣選用購(gòu)物袋,塑料購(gòu)物袋使用后怎樣處理,能對(duì)環(huán)境保護(hù)帶來(lái)積極的影響.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某紅外線遙控器發(fā)出的紅外線波長(zhǎng)為0.00000094m,用科學(xué)記數(shù)法表示這個(gè)數(shù)是 m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】夏季來(lái)臨,商場(chǎng)準(zhǔn)備購(gòu)進(jìn)甲、乙兩種空調(diào),已知甲種空調(diào)每臺(tái)進(jìn)價(jià)比乙種空調(diào)多500元,用40000元購(gòu)進(jìn)甲種空調(diào)的數(shù)量與用30000元購(gòu)進(jìn)乙種空調(diào)的數(shù)量相同.請(qǐng)解答下列問(wèn)題:

1)求甲、乙兩種空調(diào)每臺(tái)的進(jìn)價(jià);

2)若甲種空調(diào)每臺(tái)售價(jià)2500元,乙種空調(diào)每臺(tái)售價(jià)1800元,商場(chǎng)計(jì)劃用不超過(guò)36000元購(gòu)進(jìn)空調(diào)共20臺(tái),且全部售出,請(qǐng)寫(xiě)出所獲利潤(rùn)y(元)與甲種空調(diào)x(臺(tái))之間的函數(shù)關(guān)系式,并求出所能獲得的最大

利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C 的仰角為60°,沿山坡向上走到P處再測(cè)得C的仰角為45°,已知OA=200米,山坡坡度為(即tanPAB),且O、A、B在同一條直線上,求電視塔OC的高度以及此人所在位置點(diǎn)P的垂直高度.(測(cè)傾器的高度忽略不計(jì),結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案