【題目】如圖,在ACB中,∠ACB=90°,∠A=75°,點(diǎn)DAB的中點(diǎn).將ACD沿CD翻折得到A′CD,連接A′B

1)求證:CDA′B

2)若AB=4,求A′B2的值.

【答案】(1)見解析;(2)12

【解析】

1)依據(jù)直角三角形斜邊上中線的性質(zhì)可知CD=AD,然后依據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可求得∠ADC=30°,由翻折的性質(zhì)可知∠CDA′=30°,從而可求得∠A′DB的度數(shù),然后依據(jù)DA′=DB可求得∠DBA′=30°,從而可證明CDA′B;
2)連結(jié)AA′,先證明△ADA′為等邊三角形,從而可得到∠AA′D=60°,然后可求得∠AA′B=90°,最后依據(jù)勾股定理求解即可.

解:(1∵∠ACB=90°,點(diǎn)DAB的中點(diǎn)

∴AD=BD=CD= AB

∴∠ACD=∠A=75°

∴∠ADC=30°

∵△A′CD△ACD沿CD翻折得到,

∴△A′CD≌△ACD

∴AD=AD∠A′DC=∠ADC=30°

∴AD=A′D=DB,∠ADA′=60°

∴∠A′DB=120°

∴∠DBA′=∠DA′B=30°

∴∠ADC=∠DBA'

∴CD∥A′B

2)連接AA′

∵AD=A′D,∠ADA′=60°

∴△ADA′是等邊三角形.

∴AA′=AD= AB,∠DAA′=60°

∴∠AA′B=180°∠A′AB∠ABA′=90°

∵AB=4

∴AA′=2

由勾股定理得:A′B2=AB2AA′2=4222=12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生的課外學(xué)習(xí)負(fù)擔(dān),即墨區(qū)某中學(xué)數(shù)學(xué)興趣小組決定對(duì)本校學(xué)生每天的課外學(xué)習(xí)情況進(jìn)行調(diào)查,他們隨機(jī)抽取本校部分學(xué)生進(jìn)行了問卷調(diào)查,并將調(diào)查結(jié)果分為A,B,CD四個(gè)等級(jí),列表如下:

等級(jí)

A

B

C

D

每天課外學(xué)習(xí)時(shí)間

根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:

本次抽樣調(diào)查共抽取了多少名學(xué)生?其中學(xué)習(xí)時(shí)間在B等級(jí)的學(xué)生有多少人?

將條形統(tǒng)計(jì)圖補(bǔ)充完整;

表示D等級(jí)的扇形圓心角的度數(shù)是多少?

該校共有2000名學(xué)生,每天課外學(xué)習(xí)時(shí)間在2小時(shí)以內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為A0,a),Bb,a),且a,b滿足(a32+|b6|0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移3個(gè)單位,再向左平移2個(gè)單位,分別得到點(diǎn)AB的對(duì)應(yīng)點(diǎn)C,D,連接AC,BDAB

1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;

2)在y軸上是否存在一點(diǎn)M,連接MCMD,使SMCDS四邊形ABCD?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說明理由;

3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PAPO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與BD重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(4,0)、B(﹣6,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)BCA=45°時(shí),點(diǎn)C的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與x軸、y軸分別交于兩點(diǎn),與反比例函數(shù)的圖象分別交于兩點(diǎn),點(diǎn),

求一次函數(shù)與反比例函數(shù)的解析式;

直接寫出時(shí)自變量x的取值范圍.

動(dòng)點(diǎn)y軸上運(yùn)動(dòng),當(dāng)的值最大時(shí),直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知,求代數(shù)式的值.

(2)20186月武侯區(qū)某學(xué)校開展了主題為“陽光下成長,妙筆繪武侯”學(xué)生繪畫書法作品比賽,要求參賽學(xué)生每人交一件作品. 現(xiàn)將從中挑選的40件參賽作品的成績(單位:分)統(tǒng)計(jì)如下:

等級(jí)

成績(表示)

頻數(shù)

頻率

0.2

20

12

0.3

請(qǐng)根據(jù)上表提供的信息,解答下列問題:

①表中的值為 ,的值為 ;

②將本次獲得等級(jí)的參賽作品依次用標(biāo)簽表示. 學(xué)校決定從中選取兩件作品進(jìn)行全校展示,所代表的作品必須參展,另一件作品從等級(jí)余下的作品中抽取,求展示作品剛好是的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)期間,甲、乙兩人沿同一路線行駛,各自開車同時(shí)去離家560千米的景區(qū)游玩,甲先以每小時(shí)60千米的速度勻速行駛1小時(shí),再以每小時(shí)m千米的速度勻速行駛,途中體息了一段時(shí)間后,仍按照每小時(shí)m千米的速度勻速行駛,兩人同時(shí)到達(dá)目的地,圖中折線、線段分別表示甲、乙兩人所走的路程與時(shí)間之間的函數(shù)關(guān)系的圖象請(qǐng)根據(jù)圖象提供的信息,解決下列問題:

圖中E點(diǎn)的坐標(biāo)是______,題中______,甲在途中休息______h;

求線段CD的解析式,并寫出自變量x的取值范圍;

兩人第二次相遇后,又經(jīng)過多長時(shí)間兩人相距20km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線x軸交于B點(diǎn),與y軸交于C點(diǎn),拋物線經(jīng)過B、C兩點(diǎn),與y軸的另一個(gè)交點(diǎn)為點(diǎn)A,P為線段BC上一個(gè)動(dòng)點(diǎn)不與點(diǎn)B、點(diǎn)C重合

求拋物線的解析式;

設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)D,連結(jié)CD、PD,當(dāng)為直角三角形時(shí),求點(diǎn)P的坐標(biāo);

過點(diǎn)C軸,交拋物線于點(diǎn)E,如圖2,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案