如圖,已知兩直線l1和l2相交于點A(4,3),且OA=OB,請分別求出兩條直線對應(yīng)的函數(shù)解析式。

解:設(shè)L1為y=k1x

    4k1=3  k1=    即L1為y=x………3分

    ∵A(4,3) ∴OA=5=OB   ∴B(0,-5)

   設(shè)L2為y=k2x+b   ∴k2=2   即L2為y=2x-5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知兩直線l1和l2相交于點A(4,3),且OA=OB,請分別求出兩條直線對應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知兩直線l1,l2分別經(jīng)過點A(3,0),點B(-1,0),并且當(dāng)兩直線同時相交于y負(fù)半軸的點C時,恰好有l(wèi)1⊥l2,經(jīng)過點A、B、C的拋物線的對稱軸與直線l2交于點D,如圖所示.
(1)求證:△AOC∽△COB;
(2)求出拋物線的函數(shù)解析式;
(3)當(dāng)直線l1繞點C順時針旋轉(zhuǎn)α(0°<α<90°)時,它與拋物線的另一個交點為P(x,y),求四邊形APCB面積S關(guān)于x的函數(shù)解析式,并求S的最大值;
(4)當(dāng)直線l1繞點C旋轉(zhuǎn)時,它與拋物線的另一個交點為E,請找出使△ECD為等腰三角形的點E,并求出點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知兩直線l1和l2相交于點A(4,3),且OA=OB,請分別求出兩條直線對應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知兩直線l1和l2相交于點A(4,3),且OA=OB,請分別求出兩條直線對應(yīng)的函數(shù)解析式.(本題5分)


查看答案和解析>>

同步練習(xí)冊答案