【題目】關(guān)于三角函數(shù)有如下的公式:
①cos(α+β)=cosαcosβ﹣sinαsinβ;sin(α+β)=sinαcosβ+cosαsinβ;
②tan(α+β)=.
③利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如tan105°=tan(45°+60°)=====.
根據(jù)上面的知識,你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實際問題:
(1)求cos75°的值;
(2)如圖,直升機(jī)在一建筑物CD上方的點A處測得建筑物頂端點D的俯角α為60°,底端點C的俯角β為75°,此時直升機(jī)與建筑物CD的水平距離BC為42m,求建筑物CD的高.
【答案】(1)﹣;(2)建筑物CD的高為84米.
【解析】
(1)根據(jù)cos(α+β)=cosαcosβ﹣sinαsinβ可求cos75°的值;
(2)先求出俯角β的正切值,進(jìn)而根據(jù)BC求得AB,再求出俯角α的正切值,進(jìn)而根據(jù)BC求得A、D兩點垂直距離,最后CD的長即可求得.
解:(1)cos75°=cos(45°+30°)=cos45°cos30°﹣sin45°sin30°=﹣;
(2)∵β=75°,BC=42米,
∴AB=BCtanβ=42tan75°=42×=42×=42(+2)米,
∵α=60°,BC=42米
∴A、D垂直距離為BCtanα=42米,
∴CD=AB﹣42=84米.
答:建筑物CD的高為84米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻印⒈憬荩承?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x+2)(x﹣8)與x軸交于A,B兩點,與y軸交于點C,頂點為M,以AB為直徑作⊙D.下列結(jié)論:①拋物線的對稱軸是直線x=3;②⊙D的面積為16π;③拋物線上存在點E,使四邊形ACED為平行四邊形;④直線CM與⊙D相切.其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】表中所列、的7對值是二次函數(shù)圖象上的點所對應(yīng)的坐標(biāo),其中
… | … | ||||||||
… | 6 | 11 | 11 | 6 | … |
根據(jù)表中提供約信息,有以下4個判斷:①;②;③當(dāng)時,的值是;④;其中判斷正確的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形中,,,的頂點在上,交直線于點.
(1)如圖1,若,,連接,求的長.
(2)如圖2,,當(dāng)時,求證:是的中點;
(3)如圖3,若,對角線,交于點,點關(guān)于的對稱點為點,連接交于點,連接、、,求的長,請直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,y1),B(﹣3,y2),C(﹣5,y3)三個點都在反比例函數(shù)的圖象上,比較y1,y2,y3的大小,則下列各式正確的是( )
A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示拋物線過點,點,且
(1)求拋物線的解析式及其對稱軸;
(2)點在直線上的兩個動點,且,點在點的上方,求四邊形的周長的最小值;
(3)點為拋物線上一點,連接,直線把四邊形的面積分為3∶5兩部分,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橫、縱坐標(biāo)均為整數(shù)的點稱為格點,如圖,的三個頂點,,均為格點,上的點也為格點,用無刻度的直尺作圖:
(1)將線段繞點順時針旋轉(zhuǎn)90°,得到線段,寫出格點的坐標(biāo);
(2)將線段平移至線段,使點與點重合,直接寫出格點的坐標(biāo);
(3)畫出線段關(guān)于對稱的線段,保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將反比例函數(shù)y=(k>0)的圖象向左平移2個單位長度后記為圖象c,c與y軸相交于點A,點P為x軸上一點,點A關(guān)于點P的對稱點B在圖象c上,以線段AB為邊作等邊△ABC,頂點C恰好在反比例函數(shù)y=﹣(x>0)的圖象上,則k=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com