精英家教網 > 初中數學 > 題目詳情

某商場購進一種單價為40元的籃球,如果以單價50元售出,那么每月可售出500個,根據銷售經驗,銷售單價每提高1元,銷售量相應減少10個.
(1)設銷售單價提高x元(x為正整數),寫出每月銷售量y(個)與x(元)之間的函數關系式;
(2)假設這種籃球每月的銷售利潤為w元,試寫出w與x之間的函數關系式,并通過配方討論,當銷售單價定為多少元時,每月銷售這種籃球的利潤最大,最大利潤為多少元?

(1);(2),定價70元時,最大利潤為9000元.

解析試題分析:(1)用原來的銷售量去掉隨著銷售單價提高而減少的銷售量就可得出函數關系式;
(2)根據銷售利潤是銷售量與銷售一個獲得利潤的乘積,建立二次函數,進一步用配方法解決求最大值問題.
試題解析:(1)由題意得:;
(2);
時,w有最大值,50+20=70,即當銷售單價定為70元時,每月銷售這種籃球的利潤最大,最大利潤為9000元.
考點:二次函數的應用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,矩形ABCD中,AB=16cm,AD=4cm,點P、Q分別從A、B同時出發(fā),點P在邊AB上沿AB方向以2cm/s的速度勻速運動,點Q在邊BC上沿BC方向以1cm/s的速度勻速運動,當其中一點到達終點時,另一點也隨之停止運動.設運動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關于x的函數關系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知二次函數y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點;
(2)拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,若,求拋物線的表達式;
(3)以(2)中的拋物線上一點P(m,n)為圓心,1為半徑作圓,直接寫出:當m取何值時,x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商品的進價為每千克40元,銷售單價與月銷售量的關系如下表(每千克售價不能高于65元):

銷售單價(元)
50
53
56
59
62
65
月銷售量(千克)
420
360
300
240
180
120
該商品以每千克50元為售價,在此基礎上設每千克的售價上漲x元(x為正整數),每個月的銷售利潤為y元.
(1)求y與x的函數關系式,并直接寫出自變量x的取值范圍;
(2)每千克商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現,每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數:,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數關系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?
(成本=進價×銷售量)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某工廠生產某品牌的護眼燈,并將護眼燈按質量分成15個等級(等級越高,質量越好.如:二級產品好于一級產品).若出售這批護眼燈,一級產品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產同一個等級的護眼燈,每個等級每天生產的臺數如下表表示:

等級(x級)
一級
二級
三級

生產量(y臺/天)
78
76
74

(1)已知護眼燈每天的生產量y(臺)是等級x(級)的一次函數,請直接寫出與之間的函數關系式:_____;
(2)每臺護眼燈可獲利z(元)關于等級x(級)的函數關系式:______;
(3)若工廠將當日所生產的護眼燈全部售出,工廠應生產哪一等級的護眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元.為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當的降價措施,經調查發(fā)現,如果每件襯衫每降價1元,商場平均每天可多售出2件.
(1)若商場平均每天要盈利1200元,每件襯衫應降價多少元?
(2)每件襯衫降價多少元,商場平均每天盈利最多?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.點E、F同時從B點出發(fā),沿射線BC向右勻速移動.已知F點移動速度是E點移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設E點移動距離為x(x>0).

⑴△EFG的邊長是___________ (用含有x的代數式表示),當x=2時,點G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當0<x≤2時,y與x之間的函數關系式;
②當2<x≤6時,y與x之間的函數關系式;
⑶探求⑵中得到的函數y在x取含何值時,存在最大值,并求出最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知二次函數的圖像經過點(0,-4),且當x=2,有最大值—2。求該二次函數的關系式:

查看答案和解析>>

同步練習冊答案