【題目】經(jīng)市場(chǎng)調(diào)查,某種商品在第x天的售價(jià)與銷量的相關(guān)信息如下表;已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品每天的利潤(rùn)為y元.
(1)求出y與x的函數(shù)關(guān)系式
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】
(1)解:當(dāng)1≤x<50時(shí),y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,

當(dāng)50≤x≤90時(shí),

y=(200﹣2x)(90﹣30)=﹣120x+12000


(2)解:當(dāng)1≤x<50時(shí),二次函數(shù)開口向下,二次函數(shù)對(duì)稱軸為x=45,

當(dāng)x=45時(shí),y最大=﹣2×452+180×45+2000=6050,

當(dāng)50≤x≤90時(shí),y隨x的增大而減小,

當(dāng)x=50時(shí),y最大=6000,

綜上所述,該商品第45天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是6050元;


【解析】(1)根據(jù)單價(jià)乘以數(shù)量,可得利潤(rùn),可得答案.
(2)根據(jù)分段函數(shù)的性質(zhì),可分別得出最大值,根據(jù)比較可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知鈍角△ABC,老師按照如下步驟尺規(guī)作圖:

步驟1:以C為圓心,CA為半徑畫、;
步驟2:以B為圓心,BA為半徑畫、,交弧①于點(diǎn)D;
步驟3:連接AD,交BC延長(zhǎng)線于點(diǎn)H.
小明說:圖中的BH⊥AD且平分AD.
小麗說:圖中AC平分∠BAD.
小強(qiáng)說:圖中點(diǎn)C為BH的中點(diǎn).
他們的說法中正確的是 . 他的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列美麗的圖案,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意有理數(shù)x,用[x]表示不大于x的最大整數(shù).例如:[1.3]1,[3]3[2.5]=﹣3.以下結(jié)論正確的是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

[3.14]=﹣4;

②﹣[x][x];

[2x]2[x];

④若[]=﹣4,則x的取值范圍是﹣≤x<﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】亮亮和穎穎住在同一幢住宅樓,兩人準(zhǔn)備用測(cè)量影子的方法測(cè)算其樓高,但恰逢陰天,于是兩人商定改用下面方法:如圖,亮亮蹲在地上,穎穎站在亮亮和樓之間,兩人適當(dāng)調(diào)整自己的位置,當(dāng)樓的頂部 , 穎穎的頭頂及亮亮的眼睛恰在一條直線上時(shí),兩人分別標(biāo)定自己的位置然后測(cè)出兩人之間的距離 , 穎穎與樓之間的距離 , , 在一條直線上),穎穎的身高 , 亮亮蹲地觀測(cè)時(shí)眼睛到地面的距離你能根據(jù)以上測(cè)量數(shù)據(jù)幫助他們求出住宅樓的高度嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,Aa0),Bb3),C4,0),且滿足(a+b2+|ab+6|=0,線段ABy軸于F點(diǎn).

1)求點(diǎn)A、B的坐標(biāo).

2)點(diǎn)Dy軸正半軸上一點(diǎn),若EDAB,且AM,DM分別平分∠CAB∠ODE,如圖2,求∠AMD的度數(shù).

3)如圖3,

求點(diǎn)F的坐標(biāo);

點(diǎn)P為坐標(biāo)軸上一點(diǎn),若△ABP的三角形和△ABC的面積相等?若存在,求出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是拋物線形拱橋,當(dāng)水面寬AB=8米時(shí),拱頂?shù)剿娴木嚯xCD=4米.如果水面上升1米,那么水面寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1) 發(fā)現(xiàn):

如圖1,點(diǎn)是線段外一動(dòng)點(diǎn),且,.當(dāng)點(diǎn)位于 時(shí),線段的長(zhǎng)取得最大值;最大值為 (用含,的式子表示)

(2)應(yīng)用:

如圖2,點(diǎn)為線段外一動(dòng)點(diǎn),,,分別以為邊在外部作等邊和等邊,連接,

①求證:;

②直接寫出線段長(zhǎng)的最大值.

(3)拓展:

如圖3,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)為線段外一動(dòng)點(diǎn),,,,請(qǐng)直接寫出線段長(zhǎng)的最大值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案