【題目】在平面直角坐標(biāo)系xOy中,O為原點(diǎn),點(diǎn)A(2,0),點(diǎn)P(1,m)(m>0)和點(diǎn)Q關(guān)于x軸對(duì)稱.過(guò)點(diǎn)P作PB∥x軸,與直線AQ交于點(diǎn)B,如果AP⊥BO,求點(diǎn)P的坐標(biāo).
【答案】點(diǎn)P的坐標(biāo)是(1,).
【解析】
如圖,連接OP、OQ,根據(jù)已知條件得到PQ與OA互相垂直平分,推出四邊形POQA是菱形,根據(jù)菱形的性質(zhì)得到OP∥QA,推出POAB是菱形,然后根據(jù)勾股定理即可得到結(jié)論.
如圖,連接OP、OQ.
∵點(diǎn)A(2,0),點(diǎn)P(1,m),點(diǎn)P和點(diǎn)Q關(guān)于x軸對(duì)稱,
∴PQ與OA互相垂直平分,
∴四邊形POQA是菱形,
∴OP∥QA.
∵PB∥OA,
∴四邊形POAB是平行四邊形.
∵AP⊥BO,
∴POAB是菱形,
∴OP=OA=2,
∴m=,
∴點(diǎn)P的坐標(biāo)是(1,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=50°,P是BC邊上一點(diǎn),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)50°,點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為點(diǎn)P′.
(1)畫出旋轉(zhuǎn)后的三角形;
(2)連接PP′,若∠BAP=20°,求∠PP′C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探究)(1)如圖①,點(diǎn)E、F、G、H分別在平行四邊形ABCD的邊AB、BC、CD、DA上,連結(jié)EF、FG、GH、HE,將△AEH、△BFE、△CGF、△DHG分別沿EF、FG、GH、HE折疊,折疊后的圖形恰好能拼成一個(gè)無(wú)重疊、無(wú)縫隙的矩形.若,,求的長(zhǎng).
(拓展)(2)參考圖②,四邊形ABCD是平行四邊形,,當(dāng)按圖①的方式折疊后的圖形能拼成一個(gè)無(wú)重疊、無(wú)縫隙的正方形時(shí),則___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的頂點(diǎn)的坐標(biāo)是,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng).點(diǎn)、的運(yùn)動(dòng)速度均為每秒1個(gè)單位,過(guò)點(diǎn)作交于點(diǎn),一點(diǎn)到達(dá),另一點(diǎn)即停.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.
(1)填空:用含的代數(shù)式表示下列各式
__________,__________.
(2)①當(dāng)時(shí),求點(diǎn)到直線的距離.
②當(dāng)點(diǎn)到直線的距離等于時(shí),直接寫出的值.
(3)在動(dòng)點(diǎn)、運(yùn)動(dòng)的過(guò)程中,點(diǎn)是矩形(包括邊界)內(nèi)一點(diǎn),且以、、、為頂點(diǎn)的四邊形是菱形,直接寫出點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)當(dāng)二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O(0,0)時(shí),求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時(shí),該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌的飲水機(jī)接通電源后就進(jìn)入自動(dòng)程序:開(kāi)機(jī)加熱到水溫 100℃, 停止加熱,水溫開(kāi)始下降,此時(shí)水溫 y(℃)與開(kāi)機(jī)后用時(shí) x(min)成反比 例關(guān)系,直至水溫降至 30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重 復(fù)上述自動(dòng)程序.若在水溫為 30℃時(shí),接通電源后,水溫 y(℃)和時(shí)間 x(min)的關(guān)系如圖所示,水溫從 100℃降到 35℃所用的時(shí)間是________min.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y=-x2+2x+3的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)寫出A、B、D三點(diǎn)的坐標(biāo);
(2)若P(0,t)(t<-1)是y軸上一點(diǎn),Q(-5,0),將點(diǎn)Q繞著點(diǎn)P順時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn)E.當(dāng)點(diǎn)E恰好在該二次函數(shù)的圖象上時(shí),求t的值;
(3)在(2)的條件下,連接AD、AE.若M是該二次函數(shù)圖象上一點(diǎn),且∠DAE=∠MCB,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,完成(1)﹣(3)題
數(shù)學(xué)課上,老師出示了這樣一道題:如圖,四邊形ABCD,AD∥BC,AB=AD,E為對(duì)角線AC上一點(diǎn),∠BEC=∠BAD=2∠DEC,探究AB與BC的數(shù)量關(guān)系.
某學(xué)習(xí)小組的同學(xué)經(jīng)過(guò)思考,交流了自己的想法:
小柏:“通過(guò)觀察和度量,發(fā)現(xiàn)∠ACB=∠ABE”;
小源:“通過(guò)觀察和度量,AE和BE存在一定的數(shù)量關(guān)系”;
小亮:“通過(guò)構(gòu)造三角形全等,再經(jīng)過(guò)進(jìn)一步推理,就可以得到線段AB與BC的數(shù)量關(guān)系”.
……
老師:“保留原題條件,如圖2, AC上存在點(diǎn)F,使DF=CF=AE,連接DF并延長(zhǎng)交BC于點(diǎn)G,求的值”.
(1)求證:∠ACB=∠ABE;
(2)探究線段AB與BC的數(shù)量關(guān)系,并證明;
(3)若DF=CF=AE,求的值(用含k的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將與2022年2月20日在北京舉行,北京將成為歷史上第一座舉辦過(guò)夏奧會(huì)又舉辦過(guò)冬奧會(huì)的城市,東寶區(qū)舉辦了一次冬奧會(huì)知識(shí)網(wǎng)上答題競(jìng)賽,甲、乙兩校各有400名學(xué)生參加活動(dòng),為了解這兩所學(xué)校的成績(jī)情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.
(收集數(shù)據(jù))
從甲、乙兩校各隨機(jī)抽取20名學(xué)生,在這次競(jìng)賽中它們的成績(jī)?nèi)缦拢?/span>
甲 | 30 | 60 | 60 | 70 | 60 | 80 | 30 | 90 | 100 | 60 |
60 | 100 | 80 | 60 | 70 | 60 | 60 | 90 | 60 | 60 | |
乙 | 80 | 90 | 40 | 60 | 80 | 80 | 90 | 40 | 80 | 50 |
80 | 70 | 70 | 70 | 70 | 60 | 80 | 50 | 80 | 80 |
(整理、描述數(shù)據(jù))按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
(說(shuō)明:優(yōu)秀成績(jī)?yōu)?/span>80<x≤100,良好成績(jī)?yōu)?/span>50<x≤80,合格成績(jī)?yōu)?/span>30≤x≤50.)
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 67 | 60 | 60 |
乙 | 70 | 75 | a |
30≤x≤50 | 50<x≤80 | 80<x≤100 | |
甲 | 2 | 14 | 4 |
乙 | 4 | 14 | 2 |
(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如右表所示:其中a= .
(得出結(jié)論)
(1)小偉同學(xué)說(shuō):“這次競(jìng)賽我得了70分,在我們學(xué)校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是 校的學(xué)生;(填“甲”或“乙”)
(2)老師從乙校隨機(jī)抽取一名學(xué)生的競(jìng)賽成績(jī),試估計(jì)這名學(xué)生的競(jìng)賽成績(jī)?yōu)閮?yōu)秀的概率為 ;
(3)根據(jù)以上數(shù)據(jù)推斷一所你認(rèn)為競(jìng)賽成績(jī)較好的學(xué)校,并說(shuō)明理由.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com