提示“用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看成一個(gè)數(shù)(整體).”
試按提示解答下面問題.
(1)若代數(shù)式2x2+3y的值為-5,則代數(shù)式6x2+9 y+8=
-7
-7

(2)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,當(dāng)x=2時(shí)B+C=
0
0
分析:(1)將2x2+3y做為整體代入所求代數(shù)式進(jìn)行計(jì)算即可.
(2)將(A+B)與(A-C)整體做差,再代入x值可求解.
解答:解:(1),設(shè)m=2x2+3y=-5
∴6x2+9y+8=3m+8=3×(-5)+8=-7
即所求式為:-7.
(2),B+C=(A+B)-(A-C)
=(3x2-5x+1)-(-2x+3x2-5)
=-3x+6
=-3×(2)+6
=0
∴x=2時(shí),B+C=0.
點(diǎn)評(píng):本題考查整體代換思想在代數(shù)求值問題中的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看成一個(gè)數(shù)的整體.試按提示解答下面問題.
(1)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,求當(dāng)x=2時(shí)B+C的值.
提示:B+C=(A+B)-(A-C).
(2)若代數(shù)式2x2+3y+7的值為8,求代數(shù)式6x2+9y+8的值.
提示:把6x2+9 y+8變形為含有2x2+3y+7的形式.
(3)已知
xy
x+y
=2
,求代數(shù)式
3x-5xy+3y
-x+3xy-y
的值.
提示:把xy和x+y當(dāng)做一個(gè)整體;由已知得xy=2(x+y),代入
3x-5xy+3y
-x+3xy-y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、提示“用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看成一個(gè)數(shù)(整體).”
試按提示解答下面問題.
(1)若代數(shù)式2x2+3y的值為-5,求代數(shù)式6x2+9y+8的值.
(2)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,求當(dāng)x=2時(shí)B+C的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看出一個(gè)數(shù)的整體,試按提示解答下面問題.
(1)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,求當(dāng)x=2時(shí)B+C的值.
提示:B+C=(A+B)-(A-C)
(2)若代數(shù)式2x2+3y+7的值為8,求代數(shù)式6x2+9y+8的值.
提示:把6x2+9y+8變形為含有2x2+3y+7的形式.
(3)已知xy=2x+2y,求代數(shù)式(3x-5xy+3y)÷(-x+3xy-y)的值.
提示:把xy和x+y當(dāng)做一個(gè)整體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

用整體思想解題:為了簡化問題,我們往往把一個(gè)式子看出一個(gè)數(shù)的整體,試按提示解答下面問題.
(1)已知A+B=3x2-5x+1,A-C=-2x+3x2-5,求當(dāng)x=2時(shí)B+C的值.
提示:B+C=(A+B)-(A-C)
(2)若代數(shù)式2x2+3y+7的值為8,求代數(shù)式6x2+9y+8的值.
提示:把6x2+9y+8變形為含有2x2+3y+7的形式.
(3)已知xy=2x+2y,求代數(shù)式(3x-5xy+3y)÷(-x+3xy-y)的值.
提示:把xy和x+y當(dāng)做一個(gè)整體.

查看答案和解析>>

同步練習(xí)冊(cè)答案