【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AO交AB于點(diǎn)E.
(1)求直線AB的解析式;
(2)設(shè)△PEQ的面積為S,求S與t時(shí)間的函數(shù)關(guān)系,并指出自變量t的取值范圍;
(3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,點(diǎn)H是矩形AOBC內(nèi)(包括邊界)一點(diǎn),且以B、Q、E、H為頂點(diǎn)的四邊形是菱形,直接寫出t值和與其對(duì)應(yīng)的點(diǎn)H的坐標(biāo).
【答案】(1)直線AB的解析式為y=﹣2x+4.(2)St2﹣t(2<t≤4).(3)t1=,H1(),t2=20﹣,H2(10﹣,4).
【解析】試題分析:(1)根據(jù)待定系數(shù)法即可得到;
(2)過(guò)點(diǎn)Q作QF//x軸交y軸于點(diǎn)F,有兩種情況:當(dāng)0<t<2時(shí),PF=4﹣2t,當(dāng)2<t≤4時(shí),PF=2t﹣4,然后根據(jù)面積公式即可求得;
(3)由菱形的鄰邊相等即可得到.
試題解析:(1)∵C(2,4),
∴A(0,4),B(2,0),
設(shè)直線AB的解析式為y=kx+b,
∴,
解得
∴直線AB的解析式為y=﹣2x+4.
(2)如圖2,過(guò)點(diǎn)Q作QF⊥y軸于F,
∵PE//OB,
∴
∴有AP=BQ=t,PE=t,AF=CQ=4﹣t,
當(dāng)0<t<2時(shí),PF=4﹣2t,
∴S=PEPF=×t(4﹣2t)=t﹣t2,
即S=﹣t2+t(0<t<2),
當(dāng)2<t≤4時(shí),PF=2t﹣4,
∴S=PEPF=×t(2t﹣4)=t2﹣t(2<t≤4).
(3)t1=,H1(,),
t2=20﹣8,H2(10﹣4,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體的長(zhǎng)為,寬為,高為,點(diǎn)離點(diǎn)的距離為,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)爬到點(diǎn),需要爬行的最短距離是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,12),B(-5,0),連接AB.將△AOB沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)A落在x軸上的點(diǎn)處,折痕所在的直線交y軸正半軸于點(diǎn)C,則點(diǎn)C的坐標(biāo)為___________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論:①若三角形一邊上的中線和這邊上的高重合,則這個(gè)三角形是等腰三角形;②三邊分別為的三角形是直角三角形;③大于-而小于的所有整數(shù)的和為-4 ;④若一個(gè)直角三角形的兩邊長(zhǎng)分別為3和4,則第三邊長(zhǎng)是5;其中正確的結(jié)論是______________(填序號(hào));
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架梯子AB長(zhǎng)13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個(gè)梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACD和△BCE中, AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD與BE相交于點(diǎn)P,則∠BPD的度數(shù)為( 。
A.110°B.125°C.130°D.155°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的三個(gè)頂點(diǎn)在邊長(zhǎng)為1的正方形網(wǎng)格中,已知,,.
(1)畫出關(guān)于軸對(duì)稱的(其中,,分別是,,的對(duì)應(yīng)點(diǎn),不寫畫法);
(2)分別寫出,,三點(diǎn)的坐標(biāo).
(3)請(qǐng)寫出所有以為邊且與全等的三角形的第三個(gè)頂點(diǎn)(不與重合)的坐標(biāo)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AD是△ABC的邊BC上的中線,AB=12,AC=8,則邊BC及中線AD的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖,在△ABC中,∠C=60°,∠A=40°.
(1)用尺規(guī)作圖作AB的垂直平分線,交AC于點(diǎn)D,交AB于點(diǎn)E(保留作圖痕跡,不要求寫作法和證明);
(2)求證:BD平分∠CBA.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com