【題目】某飲料廠生產(chǎn)一種飲料,經(jīng)測(cè)算,用1噸水生產(chǎn)的飲料所獲利潤(rùn)y(元)是1噸水的價(jià)格x(元)的一次函數(shù).
(1)根據(jù)下表提供的數(shù)據(jù),求y與x的函數(shù)關(guān)系式;當(dāng)水價(jià)為每噸10元時(shí),1噸水生產(chǎn)出的飲料所獲的利潤(rùn)是多少?
1噸水價(jià)格x(元) | 4 | 6 |
用1噸水生產(chǎn)的飲料所獲利潤(rùn)y(元) | 200 | 198 |
(2)為節(jié)約用水,這個(gè)市規(guī)定:該廠日用水量不超過(guò)20噸時(shí),水價(jià)為每噸4元;日用水量超過(guò)20噸時(shí),超過(guò)部分按每噸40元收費(fèi).已知該廠日用水量不少于20噸,設(shè)該廠日用水量為t噸,當(dāng)日所獲利潤(rùn)為W元,求W與t的函數(shù)關(guān)系式;該廠加強(qiáng)管理,積極節(jié)水,使日用水量不超過(guò)25噸,但仍不少于20噸,求該廠的日利潤(rùn)的取值范圍.
【答案】(1)y=-x+204;194元;(2)4000≤W≤4820.
【解析】
(1)用1噸水生產(chǎn)的飲料所獲利潤(rùn)y(元)是1噸水的價(jià)格x(元)的一次函數(shù).可以設(shè)出一次函數(shù)關(guān)系式,然后根據(jù)表中所給的條件(4,200)(6,198)可求出解析式;
(2)根據(jù)函數(shù)式可求出一噸水價(jià)是40的利潤(rùn),然后根據(jù)題意可得w=200×20+164(t-20),代入t=20或t=25可求出日利潤(rùn)的取值范圍.
(1)設(shè)y關(guān)于x的一次函數(shù)式為:根據(jù)題意得:
解得
∴所求一次函數(shù)式是y=x+204,
當(dāng)x=10時(shí),y=10+204=194(元);
(2)當(dāng)1噸水的價(jià)格為40元時(shí),所獲利潤(rùn)是:y=40+204=164(元).
∴W與t的函數(shù)關(guān)系式是w=200×20+(t20)×164,
即w=164t+720,
∵ 20 ≤ t ≤ 25,
∴ 4000≤W≤4820.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向點(diǎn)B以1cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向點(diǎn)C以2cm/s的速度移動(dòng).若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,△PBQ的最大面積是( )
A.18cm2
B.12cm2
C.9cm2
D.3cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為4cm的正方形ABCD繞它的頂點(diǎn)A旋轉(zhuǎn)180°,頂點(diǎn)B所經(jīng)過(guò)的路線長(zhǎng)為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)與一次函數(shù)的圖象的交點(diǎn)的縱坐標(biāo)為, .
(1)求的值;
(2)當(dāng) 時(shí),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠色出行,低碳健身”已成為廣大市民的共識(shí).某旅游景點(diǎn)新增了一個(gè)公共自行車停車場(chǎng),6:00至18:00市民可在此借用自行車,也可將在各停車場(chǎng)借用的自行車還于此地.林華同學(xué)統(tǒng)計(jì)了周六該停車場(chǎng)各時(shí)段的借、還自行車數(shù),以及停車場(chǎng)整點(diǎn)時(shí)刻的自行車總數(shù)(稱為存量)情況,表格中x=1時(shí)的y值表示7:00時(shí)的存量,x=2時(shí)的y值表示8:00時(shí)的存量…依此類推.他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個(gè)二次函數(shù)關(guān)系.
時(shí)段 | x | 還車數(shù) | 借車數(shù) | 存量y |
6:00﹣7:00 | 1 | 45 | 5 | 100 |
7:00﹣8:00 | 2 | 43 | 11 | n |
… | … | … | … | … |
根據(jù)所給圖表信息,解決下列問(wèn)題:
(1)m= , 解釋m的實(shí)際意義:;
(2)求整點(diǎn)時(shí)刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知9:00~10:O0這個(gè)時(shí)段的還車數(shù)比借車數(shù)的3倍少4,求此時(shí)段的借車數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動(dòng),直尺兩長(zhǎng)邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1 , x2 . 求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com