【題目】如圖,在矩形ABCD中,AE平分∠BAD , ∠1=15°.
(1)求∠2的度數(shù).
(2)求證:BO=BE .
【答案】
(1)
解答:解:∵在矩形ABCD中,AE平分∠BAD,∠1=15°,
∴∠AEB=∠EAD=45°,
∴∠2=∠AEB-∠1=30°.
(2)
解答:證明:由(1)可知∠2=30°,
∴∠BAO=60°,
∵OA=OB,
∴△OAB是等邊三角形,
∴OB=AB,
∵∠AEB=∠EAD=∠BAE=45°,
∴AB=BE,
∴BO=BE.
【解析】(1)利用矩形的性質(zhì)和角平分線的性質(zhì)可知∠AEB=∠EAD=45°,那么∠2=∠AEB-∠1=30°;(2)通過∠2=30°,∠BAO=60°,證得△OAB是等邊三角形,結(jié)合AB=BE可得BO=BE .
【考點精析】根據(jù)題目的已知條件,利用等邊三角形的性質(zhì)和矩形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握等邊三角形的三個角都相等并且每個角都是60°;矩形的四個角都是直角,矩形的對角線相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點O是AC邊上的一動點,過O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)求證:EO=FO;
(2)當(dāng)CE=12,CF=10時,求CO的長;
(3)當(dāng)O點運(yùn)動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一個數(shù)a的3倍與2的和”用代數(shù)式可表示為( )
A.3(a+2)
B.(3+a)a
C.2a+3
D.3a+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AB=6,點P是AB邊上的任意一點(點P不與點A、點B重合),過點P作PD⊥AB,交直線BC于點D,作PE⊥AC,垂足為點F.
(1)求∠APE的度數(shù);
(2)連接DE,當(dāng)△PDE為等邊三角形時,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型超市從生產(chǎn)基地購進(jìn)一批水果,運(yùn)輸過程中質(zhì)量損失10%,假設(shè)不計超市其它費(fèi)用,如果超市要想至少獲得20%的利潤,那么這種水果的售價在進(jìn)價的基礎(chǔ)上應(yīng)至少提高( )
A.40%
B.33.4%
C.33.3%
D.30%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市最高氣溫是33℃,最低氣溫是24℃,則該市氣溫t(℃)的變化范圍是()
A. t>33 B. t≤24 C. 24<t<33 D. 24≤t≤33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,有矩形AOBC,點A、B的坐標(biāo)分別為(0,4)、(10,0),點P的坐標(biāo)為(2,0),點M在線段AO上,點N在線段AC上,總有∠MPN=90 ,點M從點O運(yùn)動到點A,當(dāng)點M運(yùn)動到A點時,點N與點C重合(如圖2)。令AM=x
(1).直接寫出點C的坐標(biāo)___________;
(2)、①設(shè)MN2=y,請寫出y關(guān)于x的函數(shù)關(guān)系式,并求出y的最小值;
②連接AP交MN于點D,若MN⊥A P,求x的值;
(3)、當(dāng)點M在邊AO上運(yùn)動時,∠PMN的大小是否發(fā)生變化?請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,哪些適合抽樣調(diào)查?哪些適合全面調(diào)查?
(1)工廠準(zhǔn)備對一批即將出廠的飲料中含有細(xì)菌總數(shù)的情況進(jìn)行調(diào)查;
(2)小明準(zhǔn)備對全班同學(xué)所喜愛的球類運(yùn)動的情況進(jìn)行調(diào)查;
(3)某農(nóng)田保護(hù)區(qū)對區(qū)內(nèi)的水稻秧苗的高度進(jìn)行調(diào)查.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com